×

zbMATH — the first resource for mathematics

Equivalence of differentiable mappings and analytic mappings. (English) Zbl 0516.58012

MSC:
58C25 Differentiable maps on manifolds
58K99 Theory of singularities and catastrophe theory
32A10 Holomorphic functions of several complex variables
57R50 Differential topological aspects of diffeomorphisms
32Sxx Complex singularities
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] M. Artin, On the solution of analytic equations,Inv. Math.,5 (1968), 277–291. · Zbl 0172.05301
[2] J. Bochnak-S. Łojasiewicz, A converse of the Kuiper-Kuo Theorem,Lecture Notes in Math., Springer,192 (1971), 254–261.
[3] N. M. Christenson, Zur Łojasiewicz-Ungleichung für differenzierbare Funktionen,Manuscripta Math.,20 (1977), 255–262. · Zbl 0354.26009
[4] M. Hervé,Several complex variables, Local theory, Oxford, 1963.
[5] M. W. Hirsch, B. C. Mazur, Smoothings of piecewise linear manifolds,Ann. Math. Studies,80, Princeton Univ. Press, 1974. · Zbl 0298.57007
[6] L. Hörmander,Linear partial differential operators, Springer, 1969.
[7] H. C. King, Real analytic germs and their varieties at isolated singularities,Inv. Math.,37 (1976), 193–199. · Zbl 0329.57009
[8] R. C. Kirby-L. C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulation,Ann. Math. Studies,88, Princeton Univ. Press, 1977. · Zbl 0361.57004
[9] T. C. Kuo, The jet space J r (n, p),Lecture Notes in Math., Springer,192 (1971), 169–177. · Zbl 0221.58001
[10] N. Levinson, A canonical form for an analytic function of several variables at a critical point,Bull. Amer. Math. Soc.,66 (1960), 68–69. · Zbl 0192.18201
[11] N. Levinson, A polynomial canonical form for certain analytic functions of two variables at a critical point,Bull. Amer. Math. Soc.,66 (1960), 366–368. · Zbl 0192.18202
[12] B. Malgrange,Ideals of differentiable functions, Oxford Univ. Press, 1966. · Zbl 0177.17902
[13] B. Malgrange, Sur les points singuliers des équations différentielles,Séminaire Goulaouic-Schwartz, 1972.
[14] J. N. Mather, How to stratify mapping and jet spaces,Lecture Notes in Math., Springer,535 (1975), 128–176.
[15] J. N. Mather, Stability of Cmappings, III. Finitely determined map germs,Publ. Math. I.H.E.S.,35 (1968), 127–156. · Zbl 0159.25001
[16] E. E. Moise, Affine structures in 3-manifolds V. The triangulation theorem and Hauptvermutung,Ann. Math.,56 (1952), 96–114. · Zbl 0048.17102
[17] E. E. Moise,Geometric topology in dimension 2 and 3, GTM, Springer, 1977. · Zbl 0349.57001
[18] J. R. Munkres, Obstructions to the smoothing of piecewise differentiable structures,Ann. Math.,72 (1960), 521–554. · Zbl 0108.18101
[19] J. R. Munkres, Obstructions to imposing differentiable structures,Illinois J. Math.,8 (1964), 361–376. · Zbl 0126.18701
[20] M. Nagata,Local rings, John Wiley, 1962. · Zbl 0123.03402
[21] R. Palais,Equivariant real algebraic differential topology, Part I. Smoothness categories and Nash manifolds, Notes Brandeis Univ., 1972. · Zbl 0281.57015
[22] K. Reichard, Nichtdifferenzierbare Morphismen differenzierbarer Räume,Manuscripta Math.,15 (1975), 243–250. · Zbl 0305.58003
[23] J. J. Risler, Le théorème des zéros pour les idéaux de fonctions différentiables en dimension 2 et 3,Ann. Inst. Fourier, Grenoble,26 (1976), 73–107.
[24] M. Shiota, Differentiable functions equivalent to analytic functions,Publ. RIMS, Kyoto Univ.,9 (1973), 113–121. · Zbl 0271.58002
[25] M. Shiota, Transformations of germs of differentiable functions through changes of local coordinates,Publ. RIMS, Kyoto Univ.,9 (1973), 123–140. · Zbl 0271.58003
[26] M. Shiota, On germs of differentiable functions in two variables,Publ. RIMS, Kyoto Univ.,9 (1974), 319–324. · Zbl 0278.57013
[27] M. Shiota, Some results on formal power series and differentiable functions,Publ. RIMS, Kyoto Univ.,12 (1976), 49–53. · Zbl 0338.13026
[28] M. Shiota,Thesis, Univ. of Rennes, France, 1978.
[29] L. C. Siebenmann, Deformation of homeomorphisms on stratified sets,Comm. Math. Helv,47 (1972), 123–163. · Zbl 0252.57012
[30] H. Skoda, J. Briançon, Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point deC n ,C.R. Acad. Sc. Paris,278 (1974), 949–951.
[31] J. C. Tougeron, Idéaux de fonctions différentiables I,Ann. Inst. Fourier,18 (1968), 177–240. · Zbl 0188.45102
[32] M. Van der Put, Some properties of the ring of germs of Cfunctions,Composition Math.,34 (1977), 99–108. · Zbl 0404.58012
[33] H. Whitney, A function not constant on a connected set of critical points,Duke Math. J.,1 (1935), 514–517. · Zbl 0013.05801
[34] H. Whitney, Local properties of analytic varieties,Differential and Combinatorial topology, Princeton Univ. Press, 1965, 205–244.
[35] H. Whitney, Analytic extensions of differentiable functions defined in closed sets,Trans. Amer. Math. Soc.,36 (1934), 63–89. · Zbl 0008.24902
[36] G. T. Whyburn,Analytic topology, Amer. Math. Soc. Colloq. Publ.,28, 1942. · Zbl 0061.39301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.