×

zbMATH — the first resource for mathematics

Erweiterung des G-Stabilitätsbegriffes auf die Klasse der linearen Mehrschrittblockverfahren. (German) Zbl 0516.65060
MSC:
65L05 Numerical methods for initial value problems involving ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] G. G. Dahlquist: A special stability problem for linear multistep methods. BIT 3 (1963), 27-43. · Zbl 0123.11703
[2] G. G. Dahlquist: On stability and error analysis for stiff non-linear problems, Part I. Report TRITA-NA-7508, 1975.
[3] G. G. Dahlquist: Error analysis for a class of methods for stiff non-linear initial value problems. Pro. Conf. Numerical Analysis, Dundee 1975, Springer Lecture Notes in Mathematics, 506 (1975), 60-74.
[4] G. G. Dahlquist: On the relation of G-stability to other stability concepts for linear multistep methods. Topics in Numerical Analysis III, 67-80 J. H. Miller, Acad. Press, London, 1977. · Zbl 0438.65073
[5] G. G. Dahlquist: G-stability is equivalent to A-stability. Report TRITA-NA-7805, 1978. · Zbl 0413.65057
[6] M. Práger J. Taufer E. Vitásek: Overimplicit methods for the solution of evolution problems. Acta Universitatis Carolinae - Mathematica et Physica 1 - 2 (1974), 125-133. · Zbl 0342.65052
[7] M. Práger J. Taufer E. Vitásek: Overimplicit multistep methods. Apl. mat. 18 (1973), 399-421. · Zbl 0298.65052
[8] H. A. Watts: A-stable block implicit one-step methods. Sandia Laboratories, Albuquerque, Applied Mathematics, 1971. · Zbl 0253.65045
[9] H. A. Watts L. F. Shampine: A-stable block implicit one-step methods. BIT 12 (1972), 252-266. · Zbl 0253.65045
[10] R. Vanselow: Stabilitäts- und Fehleruntersuchungen bei numerischen Verfahren zur Lösung steifer nichtlinearer Anfangswertprobleme. Diplomarbeit, TU Dresden, 1978/79.
[11] R. Vanselow: Explizite Konstruktion von linearen Mehrschrittblockverfahren. Apl. Mat. 28 (1983), 1-8. · Zbl 0516.65059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.