zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Scheduling subject to resource constraints: Classification and complexity. (English) Zbl 0516.68037

68M20Performance evaluation of computer systems; queueing; scheduling
90B35Scheduling theory, deterministic
68Q25Analysis of algorithms and problem complexity
Full Text: DOI
[1] Blazewicz, J.: Deadline scheduling of tasks with ready times and resource constraints. Information processing lett. 8, 60-63 (1979) · Zbl 0401.90048
[2] Conway, R. W.; Maxwell, W. L.; Miller, L. W.: Theory of schedulling. (1967) · Zbl 1058.90500
[3] Even, S.; Kariv, O.: An $O(n2{\cdot}5)$ algorithm for maximum matching in general graphs. Proc. 16th annual IEEE symp. Foundations of computer science, 100-112 (1975)
[4] Garey, M. R.; Johnson, D. S.: Complexity results for multiprocessor scheduling under resource constraints. SIAM J. Comput. 4, 397-411 (1975) · Zbl 0365.90076
[5] Garey, M. R.; Johnson, D. S.: Computers and intractability: a guide to the theory of NP-completeness. (1979) · Zbl 0411.68039
[6] Gonzalez, T.; Sahni, S.: Preemptive scheduling of uniform processor systems. J. assoc. Comput. Mach 25, 92-101 (1978) · Zbl 0364.68046
[7] Graham, R. L.; Lawler, E. L.; Lenstra, J. K.; Kan, A. H. G.Rinnooy: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. discrete math. 5, 287-326 (1979) · Zbl 0411.90044
[8] Karp, R. M.: On the computational complexity of combinatorial problems. Networks 5, 45-68 (1975) · Zbl 0324.05003
[9] Khachian, L. G.: A polynomial algorithm in linear programming. Soviet math. Dokl. 20, 191-194 (1979)
[10] Lageweg, B. J.; Lawler, E. L.; Lenstra, J. K.; Kan, A. H. G.Rinnooy: Computer aided complexity classification of deterministic scheduling problems. Report BW 138 (1981) · Zbl 0452.90035
[11] Slowinski, R.: Two approaches to problems of resource allocation among project activities -- a comparative study. J. operational res. Soc. 31, 711-723 (1980) · Zbl 0439.90042
[12] Ullman, J. D.: Complexity of sequencing problems. Computer & job/shop scheduling theory, 139-164 (1976)
[13] Weglarz, J.; Blazewicz, J.; Cellary, W.; Slowinski, R.: Algorithm 520: an automatic revised simplex method for constrained resource network scheduling. ACM trans. Math. software 3, 295-300 (1977) · Zbl 0374.90033