Scheduling subject to resource constraints: Classification and complexity. (English) Zbl 0516.68037


68M20 Performance evaluation, queueing, and scheduling in the context of computer systems
90B35 Deterministic scheduling theory in operations research
68Q25 Analysis of algorithms and problem complexity


Algorithm 520
Full Text: DOI


[1] Blazewicz, J., Deadline scheduling of tasks with ready times and resource constraints, Information Processing Lett., 8, 60-63 (1979) · Zbl 0401.90048
[2] Conway, R. W.; Maxwell, W. L.; Miller, L. W., Theory of Schedulling (1967), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 1058.90500
[3] Even, S.; Kariv, O., An \(O(n^{2·5})\) algorithm for maximum matching in general graphs, Proc. 16th Annual IEEE Symp. Foundations of Computer Science, 100-112 (1975)
[4] Garey, M. R.; Johnson, D. S., Complexity results for multiprocessor scheduling under resource constraints, SIAM J. Comput., 4, 397-411 (1975) · Zbl 0365.90076
[5] Garey, M. R.; Johnson, D. S., Computers and Intractability: a Guide to the Theory of NP-Completeness (1979), Freeman: Freeman San Francisco · Zbl 0411.68039
[6] Gonzalez, T.; Sahni, S., Preemptive scheduling of uniform processor systems, J. Assoc. Comput. Mach., 25, 92-101 (1978) · Zbl 0364.68046
[7] Graham, R. L.; Lawler, E. L.; Lenstra, J. K.; Kan, A. H.G. Rinnooy, Optimization and approximation in deterministic sequencing and scheduling: a survey, Ann. Discrete Math., 5, 287-326 (1979) · Zbl 0411.90044
[8] Karp, R. M., On the computational complexity of combinatorial problems, Networks, 5, 45-68 (1975) · Zbl 0324.05003
[9] Khachian, L. G., A polynomial algorithm in linear programming, Soviet Math. Dokl., 20, 191-194 (1979) · Zbl 0409.90079
[10] Lageweg, B. J.; Lawler, E. L.; Lenstra, J. K.; Kan, A. H.G. Rinnooy, Computer aided complexity classification of deterministic scheduling problems, (Report BW 138 (1981), Mathematisch Centrum: Mathematisch Centrum Amsterdam) · Zbl 0452.90035
[11] Slowinski, R., Two approaches to problems of resource allocation among project activities — a comparative study, J. Operational Res. Soc., 31, 711-723 (1980) · Zbl 0439.90042
[12] Ullman, J. D., Complexity of sequencing problems, (Coffman, E. G., Computer & Job/Shop Scheduling Theory (1976), Wiley: Wiley New York), 139-164
[13] Weglarz, J.; Blazewicz, J.; Cellary, W.; Slowinski, R., Algorithm 520: an automatic revised simplex method for constrained resource network scheduling, ACM Trans. Math. Software, 3, 295-300 (1977) · Zbl 0374.90033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.