×

zbMATH — the first resource for mathematics

Establishing a statistic model for recognition of steroid hormone response elements. (English) Zbl 1118.92030
Summary: Identification of hormone response elements (HREs) is essential for understanding the mechanism of hormone-regulated gene expression. To date, there has been a lack of effective bioinformatics tools for recognition of specific HRE such as Progesterone Response Elements (PRE). In this paper, a comprehensive survey and comparison of in silico methods is conducted for establishing a more accurate statistic model. Homogeneity of steroid HRE is analyzed and a reliable training dataset is constructed through extensive searching for experimentally validated response elements from more than 150 literature sources. Based on the observation that the verified HREs carry di-nucleotide preservation in comparison with uniform nucleotide distributions, both mono and di-nucleotide Position Weight Matrices are computed to extract the statistic pattern of the positions. It is followed by the sequence transition pattern recognition using a specifically designed profile Hidden Markov Model.
Reciprocal combination of the statistic and transition patterns significantly improves the performance of the model in terms of higher sensitivity and specificity. Upon acquisition of the putative response elements in the promoter areas of vertebrate genes, a qualitative scheme is applied to assess the probability for each gene to be a hormone primary target. Using \(>650\) records of experimentally validated steroid hormone response elements, a high sensitivity level of 73% and high specificity level of one prediction per 8.24 kb is reached, allowing this model to be used for further prediction of primary target genes through the analysis of their upstream promoters, for human or other vertebrate genomes of interest.
Additional documents, supplementary data and the web-based program developed for response elements prediction are freely available for academic research at http://birc.ntu.edu.sg/pmaria/. Submission of putative gene promoter regions for recognition of potential regulatory PREs can be as long as 5 kb.
MSC:
92C40 Biochemistry, molecular biology
92C30 Physiology (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P., Molecular biology of the cell, (2002), Garland Publishing New York
[2] Bajic, V.B.; Tan, S.L.; Chong, A.; Tang, S.; Strom, A.; Gustafsson, J.A.; Lin, C.Y.; Liu, E.T., Dragon ERE finder version 2: A tool for accurate detection and analysis of estrogen response elements in vertebrate genomes, Nucl. acids res., 31, 3605-3607, (2003)
[3] Bajic, V.B.; Tan, S.L.; Suzuki, Y.; Sugano, S., Promoter prediction analysis on the whole human genome, Nat. biotechnol., 22, 1467-1473, (2004)
[4] Benos, P.V.; Lapedes, A.S.; Stormo, G.D., Is there a code for protein-DNA recognition? probab(ilistical)ly…, Bioessays, 24, 466-475, (2002)
[5] Benos, P.V.; Bulyk, M.L.; Stormo, G.D., Additivity in protein-DNA interactions: how good an approximation is it?, Nucl. acids res., 30, 4442-4451, (2002)
[6] Bono, H.U., Sayamatcher: genome scale organization and systematic analysis of nuclear receptor response elements, Gene, 364, 74-78, (2005)
[7] Cartharius, K.; Frech, K.; Grote, K.; Klocke, B.; Haltmeier, M.; Klingenhoff, A.; Frisch, M.; Bayerlein, M.; Werner, T., Matinspector and beyond: promoter analysis based on transcription factor binding sites, Bioinformatics, 21, 2933-2942, (2005)
[8] Chenna, R.; Sugawara, H.; Koike, T.; Lopez, R.; Gibson, T.J.; Higgins, D.G.; Thompson, J.D., Multiple sequence alignment with the clustal series of programs, Nucl. acids res., 31, 3497-3500, (2003)
[9] Conneely, O.M., Perspective: female steroid hormone action, Endocrinology, 142, 2194-2199, (2001)
[10] Dahlman-Wright, K.; Siltala-Roos, H.; Carlstedt-Duke, J.; Gustafsson, J.A., Protein – protein interactions facilitate DNA binding by the glucocorticoid receptor DNA-binding domain, J. biol. chem., 265, 14030-14035, (1990)
[11] Du, Z.; Lin, F., Pattern-constrained multiple polypeptide sequence alignment, Comput. biol. chem., 29, 303-307, (2005) · Zbl 1102.92017
[12] Du, Z.; Lin, F.; Roshan, U.W., Reconstruction of large phylogenetic trees: a parallel approach, Comput. biol. chem., 29, 273-280, (2005) · Zbl 1102.92039
[13] Eddy, S.R., Profile hidden Markov models, Bioinformatics, 14, 755-763, (1998)
[14] Evans, R.M., The steroid and thyroid hormone receptor superfamily, Science, 240, 889-895, (1988)
[15] Favorov, A.V.; Gelfand, M.S.; Gerasimova, A.V.; Ravcheev, D.A.; Mironov, A.A.; Makeev, V.J., A Gibbs sampler for identification of symmetrically structured, spaced DNA motifs with improved estimation of the signal length, Bioinformatics, 21, 2240-2245, (2005)
[16] Kamalakaran, S.; Radhakrishnan, S.K.; Beck, W.T., Identification of estrogen-responsive genes using a genome-wide analysis of promoter elements for transcription factor binding sites, J. biol. chem., 280, 21491-21497, (2005)
[17] Kel, A.E.; Gossling, E.; Reuter, I.; Cheremushkin, E.; Kel-Margoulis, O.V.; Wingender, E., MATCH: A tool for searching transcription factor binding sites in DNA sequences, Nucl. acids res., 31, 3576-3579, (2003)
[18] Khorasanizadeh, S.; Rastinejad, F., Nuclear – receptor interactions on DNA-response elements, Trends biochem. sci., 26, 384-390, (2001)
[19] Ko, Y.J.; Balk, S.P., Targeting steroid hormone receptor pathways in the treatment of hormone dependent cancers, Curr. pharm. biotechnol., 5, 459-470, (2004)
[20] Leo, J.C.; Wang, S.M.; Guo, C.H.; Aw, S.E.; Zhao, Y.; Li, J.M.; Hui, K.M.; Lin, V.C., Gene regulation profile reveals consistent anticancer properties of progesterone in hormone-independent breast cancer cells transfected with progesterone receptor, Int. J. cancer, 117, 561-568, (2005)
[21] Lieberman, B.A.; Bona, B.J.; Edwards, D.P.; Nordeen, S.K., The constitution of a progesterone response element, Mol. endocrinol., 7, 515-527, (1993)
[22] Lin, V.C.; Woon, C.T.; Aw, S.E.; Guo, C., Distinct molecular pathways mediate progesterone-induced growth inhibition and focal adhesion, Endocrinology, 144, 5650-5657, (2003)
[23] Manni, L.; Cajander, S.; Lundeberg, T.; Naylor, A.S.; Aloe, L.; Holmang, A.; Jonsdottir, I.H.; Stener-Victorin, E., Effect of exercise on Ovarian morphology and expression of nerve growth factor and alpha(1)- and beta(2)-adrenergic receptors in rats with steroid-induced polycystic ovaries, J. neuroendocrinol., 17, 846-858, (2005)
[24] Nelson, C.C.; Hendy, S.C.; Shukin, R.J.; Cheng, H.; Bruchovsky, N.; Koop, B.F.; Rennie, P.S., Determinants of DNA sequence specificity of the androgen, progesterone, and glucocorticoid receptors: evidence for differential steroid receptor response elements, Mol. endocrinol., 13, 2090-2107, (1999)
[25] Quandt, K.; Frech, K.; Karas, H.; Wingender, E.; Werner, T., Matind and matinspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data, Nucl. acids. res., 23, 4878-4884, (1995)
[26] Rahmann, S.; Muller, T.; Vingron, M., On the power of profiles for transcription factor binding site detection, Stat. appl. genet. mol. biol., 2, (2003), (Article 7) · Zbl 1038.92019
[27] Roche, P.J.; Hoare, S.A.; Parker, M.G., A consensus DNA-binding site for the androgen receptor, Mol. endocrinol., 6, 2229-2235, (1992)
[28] Sandelin, A.; Alkema, W.; Engstrom, P.; Wasserman, W.W.; Lenhard, B., JASPAR: an open-access database for eukaryotic transcription factor binding profiles, Nucl. acids res., 32, D91-D94, (2004)
[29] Sandelin, A.; Wasserman, W.W., Prediction of nuclear hormone receptor response elements, Mol. endocrinol., 19, 595-606, (2005)
[30] Silva, J.; Silva, J.M.; Barradas, M.; Garcia, J.M.; Dominguez, G.; Garcia, V.; Pena, C.; Gallego, I.; Espinosa, R.; Serrano, M.; Bonilla, F., Analysis of the candidate tumor suppressor ris-1 in primary human breast carcinomas, Mutat. res., 594, 78-85, (2006)
[31] Smith, A.D.; Sumazin, P.; Xuan, Z.; Zhang, M.Q., DNA motifs in human and mouse proximal promoters predict tissue-specific expression, Proc. natl. acad. sci. U.S.A., 103, 6275-6280, (2006)
[32] Stepanova, M.; Tiazhelova, T.; Skoblov, M.; Baranova, A., A comparative analysis of relative occurrence of transcription factor binding sites in vertebrate genomes and gene promoter areas, Bioinformatics, 21, 1789-1796, (2005)
[33] Stormo, G.D., DNA binding sites: representation and discovery, Bioinformatics, 16, 16-23, (2000)
[34] Tang, S.; Tan, S.L.; Ramadoss, S.K.; Kumar, A.P.; Tang, M.H.; Bajic, V.B., Computational method for discovery of estrogen responsive genes, Nucl. acids res., 32, 6212-6217, (2004)
[35] Tompa, M.; Li, N.; Bailey, T.L.; Church, G.M.; De Moor, B.; Eskin, E.; Favorov, A.V.; Frith, M.C.; Fu, Y.; Kent, W.J.; Makeev, V.J.; Mironov, A.A.; Noble, W.S.; Pavesi, G.; Pesole, G.; Regnier, M.; Simonis, N.; Sinha, S.; Thijs, G.; van Helden, J.; Vandenbogaert, M.; Weng, Z.; Workman, C.; Ye, C.; Zhu, Z., Assessing computational tools for the discovery of transcription factor binding sites, Nat. biotechnol., 23, 137-144, (2005)
[36] Tsai, S.Y.; Tsai, M.J.; O’Malley, B.W., Cooperative binding of steroid hormone receptors contributes to transcriptional synergism at target enhancer elements, Cell, 57, 443-448, (1989)
[37] Wasserman, W.W.; Sandelin, A., Applied bioinformatics for the identification of regulatory elements, Nat. rev. genet., 5, 276-287, (2004)
[38] Zheng, Z.Y.; Bay, B.H.; Aw, S.E.; Lin, V.C., A novel antiestrogenic mechanism in progesterone receptor-transfected breast cancer cells, J. biol. chem., 280, 17480-17487, (2005)
[39] Zilliacus, J.; Wright, A.P.; Carlstedt-Duke, J.; Gustafsson, J.A., Structural determinants of DNA-binding specificity by steroid receptors, Mol. endocrinol., 9, 389-400, (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.