×

zbMATH — the first resource for mathematics

On the Iwasawa invariants of certain \(\mathbb Z_p\)-extensions. (English) Zbl 0517.12003

MSC:
11R23 Iwasawa theory
11R18 Cyclotomic extensions
11S15 Ramification and extension theory
11R32 Galois theory
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] A. Brummer : On the Units of Algebraic Number Fields . Mathematika 14 (1967) 121-124. · Zbl 0171.01105 · doi:10.1112/S0025579300003703
[2] R. Greenberg : On a certain p-adic representation . Inventiones Math. 21 (1973) 117-124. · Zbl 0268.12004 · doi:10.1007/BF01389691 · eudml:142221
[3] K. Iwasawa : On Zp-extensions of Algebraic Number Fields . Annals of Math., ser (2) 1973 (98) 187-326. · Zbl 0285.12008 · doi:10.2307/1970784
[4] J. Carroll and H. Kisilevsky : On Iwasawa’s \lambda Invariant for Certain Zp-extensions . Acta Arithmetica, XL (1981) 1-8. · Zbl 0496.12005 · eudml:205794
[5] J.F. Jaulent : Sur la théorie des genres dans une extension procyclique métabelienne sur un sous corps . To appear.
[6] H. Kisilevsky : Some Non-Semi-Simple Iwasawa Modules . To appear in Comp. Math. 49 (1983) vol. 3. · Zbl 0517.12004 · numdam:CM_1983__49_3_399_0 · eudml:89616
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.