×

zbMATH — the first resource for mathematics

An existence result for optimal economic growth problems. (English) Zbl 0517.49002

MSC:
49J15 Existence theories for optimal control problems involving ordinary differential equations
28B20 Set-valued set functions and measures; integration of set-valued functions; measurable selections
49J45 Methods involving semicontinuity and convergence; relaxation
91B62 Economic growth models
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baum, R.F, Existence theorems for Lagrange control problems with unbounded time domain, J. optim. theory appl., 19, 89-116, (1976) · Zbl 0305.49002
[2] Takekuma, S.-I, A sensitivity analysis on optimal economic growth, J. math. econom., 7, 193-208, (1980) · Zbl 0436.90024
[3] Magill, M.J.P, Infinite horizon programs, Econometrica, 49, 679-711, (1981) · Zbl 0479.90030
[4] Magill, M.J.P, On a class of variational problems arising in mathematical economics, J. math. anal. appl., 82, 66-74, (1981) · Zbl 0511.90037
[5] Tonelli, L, Sur une méthode directe du calcul des variations, Rend. circ. mat. Palermo, 39, 233-264, (1915) · JFM 45.0615.02
[6] Ioffe, A.D; Tichomirov, V.M, Theorie der extremalaufgaben, (1974), Nauka Moscow
[7] German transl. Deutscher Verlag der Wissenschaften, Berlin, 1979.
[8] Cesari, L, Lower semicontinuity and lower closure theorems without seminormality conditions, Ann. mat. pura appl., 98, 381-397, (1974) · Zbl 0281.49006
[9] Olech, C, Weak lower semicontinuity of integral functions, J. optim. theory appl., 19, 3-16, (1976) · Zbl 0305.49019
[10] Ioffe, A.D, On lower semicontinuity of integral functions, SIAM J. control optim., 15, 521-538, (1977) · Zbl 0361.46037
[11] Balder, E.J, Lower semicontinuity of integral functionals with nonconvex integrands by relaxation-compactification, SIAM J. control optim., 19, 533-542, (1981) · Zbl 0475.49006
[12] Balder, E.J, Lower closure problems with weak convergence conditions in a new perspective, SIAM J. control optim., 20, 198-210, (1982) · Zbl 0499.49006
[13] {\scE. J. Balder}, Mathematical foundations of statistical decision theory: The modern view point, I. Statistics and Decisions, in press.
[14] McShane, E.J; McShane, E.J, Existence theorems for ordinary problems of the calculus of variations, Ann. scuola norm. sup. Pisa, Ann. scuola norm. sup. Pisa, 3, 287-315, (1934) · Zbl 0010.06801
[15] Tonelli, L, Su gli integrali del calcolo delle variazioni in forma ordinaria, Ann. scuola norm. sup. Pisa, 3, 401-450, (1934) · JFM 60.0452.02
[16] Cesari, L, Existence theorems for weak and usual optimal solutions in Lagrange problems with unilateral constraints. I, Trans. amer. math. soc., 124, 369-412, (1966) · Zbl 0145.12501
[17] Goodman, G.S, The duality of convex functions and Cesari’s property (Q), J. optim. theory appl., 19, 17-23, (1976) · Zbl 0305.49012
[18] {\scE. J. Balder}. The complete Hamiltonian characterization of property (Q) and its application to infinite dimensional lower closure problems, Preprint No. 181. Math. Inst., Univ. of Utrecht (unpublished manuscript).
[19] Cinquini, S; Cinquini, S, Sopra l’esistenza dell’estremo assoluto per gli integrali estesi a intervalli infiniti, Rend. accad. lincei, Rend. accad. lincei, 32, 845-851, (1962) · Zbl 0113.31102
[20] Ramsey, F.P, A mathematical theory of saving, Econ. J., 38, 543-559, (1928)
[21] Koopmans, T.C, On the concept of optimal economic growth, (), 28, 485-547, (1965), Reprinted in
[22] Dellacherie, C; Meyer, P.-A, Probabilités et potentiel, (1975), Hermann Paris
[23] English transl. North-Holland, Amsterdam, 1979.
[24] Rockafellar, R.T, Integral functions, normal integrands and measurable selections, () · Zbl 0374.49001
[25] Castaing, C; Valadier, M, Convex analysis and measurable multifunctions, () · Zbl 0346.46038
[26] Dunford, N; Schwartz, J.T, Linear operators I, (1957), Interscience New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.