A computational approach to fuzzy quantifiers in natural languages. (English) Zbl 0517.94028


94D05 Fuzzy sets and logic (in connection with information, communication, or circuits theory)
03B52 Fuzzy logic; logic of vagueness
68T99 Artificial intelligence
68P20 Information storage and retrieval of data
03E72 Theory of fuzzy sets, etc.
Full Text: DOI


[1] Adams, E. W., The logic of “almost all.”, J. Philos. Logic, 3, 3-17 (1974) · Zbl 0278.02022
[2] Adams, E. W.; Levine, H. F., On the uncertainties transmitted from premises to conclusions in deductive inferences, Synthese, 30, 429-460 (1975) · Zbl 0307.02031
[3] Adams, E. W.; Carlstrom, I. F., Representing approximate ordering and equivalence relations, J. Math. Psych., 19, 182-207 (1979) · Zbl 0411.92003
[4] Adams, E. W., Improbability transmissibility and marginal essentialness of premises in inferences involving indicative conditionals, J. Philos. Logic, 10, 149-177 (1981) · Zbl 0473.03012
[5] Barr, A.; Feigenbaum, E. W., The Handbook of Artificial Intelligence, Vols. 1-3 (1982), Kaufmann: Kaufmann Los Altos · Zbl 0509.68088
[6] Bartsch, R.; Vennemann, T., Semantic Structures (1972), Attenaum Verlag: Attenaum Verlag Frankfurt
[7] Barwise, J.; Cooper, R., Generalized quantifiers and natural language, Linguistics and Philos., 4, 159-219 (1981) · Zbl 0473.03033
[8] Bellmann, R. E.; Zadeh, L. A., Local and fuzzy logics, (Epstein, G., Modern Uses of Multiple-Valued Logic (1977), Reidel: Reidel Dordrecht), 103-165 · Zbl 0382.03017
[9] Blanchard, N., Theories cardinales et ordinales des ensembles flou: les multiensembles, (Thesis (1981), University of Claude Bernard: University of Claude Bernard Lyon)
[10] Carlstrom, I. F., Truth and entailment for a vague quantifier, Synthese, 30, 461-495 (1975) · Zbl 0309.02023
[11] Carnap, R., Meaning and Necessity (1952), University of Chicago Press · Zbl 0034.00106
[12] Cooper, W. S., Logical Linguistics (1978), Reidel: Reidel Dordrecht
[13] Cresswell, M. J., Logic and Languages (1973), Methuen: Methuen London · Zbl 0287.02009
[14] Cushing, S., The formal semantics of quantification, Indiana Univ. Linguistics Club (1977)
[15] Cushing, S., Quantifier Meanings—A Study in the Dimensions of Semantic Competence (1982), North-Holland: North-Holland Amsterdam
[16] Damerau, F. J., On fuzzy adjectives, (Memo. RC 5340 (1975), IBM Research Laboratory: IBM Research Laboratory Yorktown Heights, New York)
[17] DeLuca, A.; Termini, S., A definition of non-probabilistic entropy in the setting of fuzzy sets theory, Inform. Control, 20, 301-312 (1972) · Zbl 0239.94028
[18] Dowty, D. R., Introduction to Montague Semantics (1981), Reidel: Reidel Dordrecht
[19] Dubois, D., A new definition of fuzzy cardinality of finite fuzzy sets, BUSEFAL, 8, 65-67 (1981)
[20] Dubois, D.; Prade, H., Fuzzy Sets and Systems: Theory and Applications (1980), Academic Press: Academic Press New York · Zbl 0444.94049
[21] Dubois, D.; Prade, H., Operations on fuzzy numbers, Int. J. Systems Sci., 9, 613-626 (1978) · Zbl 0383.94045
[22] Dubois, D.; Prade, H., Addition of interactive fuzzy numbers, IEEE Trans. on Automatic Control, 26, 926-936 (1981) · Zbl 1457.68262
[23] Dubois, D., Proprietes de la cardinalite floue d’un ensemble flou fini, BUSEFAL, 8, 11-12 (1981)
[24] Duda, R. O.; Gaschnig, J.; Hart, P. E., Model design in the PROSPECTOR consultation system for mineral exploration, (Michie, D., Expert Systems in the Micro-Electronic Age (1979), Edinburgh University Press: Edinburgh University Press Edinburgh), 153-167
[25] Ebbinghaus, H.-D., Uber fur-fast-alle quantoren, Archiv fur Math. Logik und Grundlageusforschung, 12, 39-53 (1969) · Zbl 0182.31502
[26] Gaines, B. R.; Kohout, L. J., The fuzzy decade: a bibliography of fuzzy systems and closely related topics, Int. J. Man-Machine Studies, 9, 1-68 (1977) · Zbl 0353.02011
[27] Gaines, B. R., Logical foundations for database systems, Int. J. Man-Machine Studies, 11, 481-500 (1979) · Zbl 0404.68098
[28] Goguen, J. A., The logic of inexact concepts, Synthese, 19, 325-373 (1969) · Zbl 0184.00903
[29] Hersh, H. M.; Caramazza, A., A fuzzy set approach to modifiers and vagueness in natural language, J. Exper. Psych., 105, 254-276 (1976)
[30] Hilpinen, R., (Przelecki, M.; Wojcicki, R., Approximate truth and truthlikeness. Approximate truth and truthlikeness, Proc. Conf. Formal Methods in the Methodology of the Empirical Sciences, Warsaw, 1974 (1976), Reidel: Reidel Dordrecht) · Zbl 0374.02007
[31] Hintikka, J. K., Logic, Language-Games, and Information: Kantian Themes in the Philosophy of Logic (1973), Oxford University Press: Oxford University Press Oxford · Zbl 0253.02005
[32] Hobbs, J., Making computational sense of Montague’s intensional logic, Artificial Intell., 9, 287-306 (1978) · Zbl 0379.02005
[33] Hofmann, T. R., Qualitative terms for quantity, (Trappl, R., Proc. 6th European Meeting on Cybernetics and Systems Research (1982), North-Holland: North-Holland Amsterdam)
[34] Hoover, D. N., Probability logic, Annals Math. Logic, 14, 287-313 (1978) · Zbl 0394.03033
[35] Ishizuka, M.; Fu, K. S.; Yao, J. T.P., A rule-based inference with fuzzy set for structural damage assessment, (Gupta, M.; Sanchez, E., Fuzzy Information and Decision Processes (1982), North-Holland: North-Holland Amsterdam)
[36] Johnson-Laird, P. N., Procedural semantics, Cognition, 5, 189-214 (1977)
[37] Kaufmann, A., La theorie des numbres hybrides, BUSEFAL, 8, 105-113 (1981)
[38] Keenan, E. L., Quantifier structures in English, Foundations of Language, 7, 255-336 (1971)
[39] Klement, E. P.; Schwyhla, W.; Lowen, R., Fuzzy probability measures, Fuzzy Sets and Systems, 5, 83-108 (1981)
[40] Klement, E. P., Operations on fuzzy sets and fuzzy numbers related to triangular norms, (Proc. 11th Conf. Multiple-Valued Logic (1981), Univ. of Oklahoma: Univ. of Oklahoma Norman), 218-225 · Zbl 0547.04003
[41] Klement, E. P., (An axiomatic theory of operations on fuzzy sets (1981), Institut fur Mathematik, Johannes Kepler Universitat Linz: Institut fur Mathematik, Johannes Kepler Universitat Linz Institutsbericht), 159
[42] Lakoff, G., (Jockney, D.; Harper, W.; Freed, B., Contemporary Research in Philosophical Logic and Linguistic Semantics (1973), Reidel: Reidel Dordrecht), 221-271, Also in · Zbl 0209.30101
[43] Lambert, K.; van Fraassen, B. C., Meaning relations, possible objects and possible worlds, Philos. Problems in Logic, 1-19 (1970) · Zbl 0188.32001
[44] Mamdani, E. H.; Gaines, B. R., Fuzzy Reasoning and its Applications (1981), Academic Press: Academic Press London · Zbl 0488.03001
[45] McCarthy, J., Circumscription: A non-monotonic inference rule, Artificial Intell., 13, 27-40 (1980) · Zbl 0435.68073
[46] McCawley, J. D., Everything that Linguists have Always Wanted to Know about Logic (1981), University of Chicago Press: University of Chicago Press Chicago
[47] McDermott, D. V.; Doyle, J., Non-monotonic logic. I., Artificial Intell., 13, 41-72 (1980) · Zbl 0435.68074
[48] McDermott, D. V., Non-monotonic logic II: non-monotonic modal theories, J. Assoc. Comp. Mach., 29, 33-57 (1982) · Zbl 0477.68099
[49] Mill, J. S., A System of Logic (1895), Harper: Harper New York
[50] Miller, D., Popper’s qualitative theory of verisimilitude, Brit. J. Philos. Sci., 25, 166-177 (1974) · Zbl 0377.02007
[51] Miller, G. A.; Johnson-Laird, P. N., Language and Perception (1976), Harvard University Press: Harvard University Press Cambridge
[52] Mizumoto, M.; Fukame, S.; Tanaka, K., Fuzzy reasoning Methods by Zadeh and Mamdani, and improved methods, (Proc. 3rd Workshop on Fuzzy Reasoning (1978), Queen Mary College: Queen Mary College London)
[53] Mizumoto, M.; Tanaka, K., Some properties of fuzzy numbers, (Gupta, M. M.; Ragade, R. K.; Yager, R. R., Advances in Fuzzy Set Theory and Applications (1979), North-Holland: North-Holland Amsterdam), 153-164 · Zbl 0434.94026
[54] Mizumoto, M.; Umano, M.; Tanaka, K., Implementation of a fuzzy-set-theoretic data structure system, Tokyo. Tokyo, 3rd Int. Conf. Very Large Data Bases (1977)
[55] Moisil, G. C., Lectures on the Logic of Fuzzy Reasoning (1975), Bucarest
[56] Montague, R., Formal Philosophy, (Thomason, R., Selected Papers (1974), Yale University Press: Yale University Press New Haven)
[57] Moore, R. E., Interval Analysis (1966), Prentice-Hall: Prentice-Hall Englewood Cliffs · Zbl 0176.13301
[58] Morgenstern, C. F., The measure quantifier, J. Symbolic Logic, 44, 103-108 (1979) · Zbl 0404.03025
[59] Mostowski, A., On a generalization of quantifiers, Fund. Math., 44, 17-36 (1957) · Zbl 0078.24401
[60] Naranyani, A. S., Methods of modeling incompleteness of data in knowledge bases, (Knowledge Representation and Modeling of Processes of Understanding (1980), Academy of Sciences of U.S.S.R: Academy of Sciences of U.S.S.R Novosibirsk), 153-162
[61] Nguyen, H. T., Toward a calculus of the mathematical notion of possibility, (Gupta, M. M.; Ragade, R. K.; Yager, R. R., Advances in Fuzzy Set Theory and Applications (1979), North-Holland: North-Holland Amsterdam), 235-246
[62] Niiniluoto, I.; Tuomela, R., Theoretical Concepts and Hypothetico-inductive Inference (1973), Reidel: Reidel Dordrecht · Zbl 0281.02003
[63] Niiniluoto, I., On the truthlikeness of generalizations, (Hintikka, J.; Butts, R., Basic Problems in Methodology and Linguistics (1977), Reidel: Reidel Dordrecht), 121-147
[64] Noguchi, K.; Umano, M.; Mizumoto, M.; Tanaka, K., Implementation of fuzzy artificial intelligence language FLOU, (Tech. Rep. (1976), Automation and Language of IECE)
[65] Orlov, A. I., Problems of Optimization and Fuzzy Variables (1980), Znaniye: Znaniye Moscow
[66] Partee, B., Montague Grammar (1976), Academic Press: Academic Press New York
[67] Peterson, P., On the logic of few, many and most, Notre Dame. J. Formal Logic, 20, 155-179 (1979) · Zbl 0299.02012
[68] Reiter, R., A logic for default reasoning, Artificial Intell., 13, 81-132 (1980) · Zbl 0435.68069
[69] Rescher, N., Plausible Reasoning (1976), Van Gorcum: Van Gorcum Amsterdam
[70] Schubert, L. K.; Goebel, R. G.; Cercone, N., The structure and organization of a semantic net for comprehension and inference, (Findler, N. V., Associative Networks (1979), Academic Press: Academic Press New York), 122-178
[71] (Searle, J., The Philosophy of Language (1971), Oxford University Press: Oxford University Press Oxford)
[72] Shortliffe, E. H., Computer-based Medical Consultations: MYCIN (1976), American Elsevier: American Elsevier New York
[73] Slomson, A. B., Some problems in mathematical logic, (Thesis (1967), Oxford University)
[74] Sugeno, M., Fuzzy measures and fuzzy integrals: a survey, (Gupta, M. M.; Saridis, G. N.; Gaines, B. R., Fuzzy Automata and Decision Processes (1977), North-Holland: North-Holland Amsterdam), 89-102
[75] Suppes, P., Elimination of quantifiers in the semantics of natural languages by use of extended relation algebras, Revue Int. Philosphie, 243-259 (1976)
[76] Terano, T.; Sugeno, M., Conditional fuzzy measures and their applications, (Zadeh, L. A.; Fu, K. S.; Tanaka, K.; Shimura, M., Fuzzy Sets and Their Applications to Cognitive and Decision Processes (1975), Academic Press: Academic Press New York), 151-170 · Zbl 0316.60005
[77] Van Lehn, K., Determining the scope of English quantifiers, (Tech. Rep. 483 (1978), AI Laboratory, M.I.T)
[78] Wilks, Y., Philosophy of language, (Charniak, E.; Wilks, Y., Computational Linguistics (1976), North-Holland: North-Holland Amsterdam), 205-233
[79] Yager, R. R., A note on probabilities of fuzzy events, Inform. Sci., 18, 113-129 (1974) · Zbl 0438.60006
[80] Yager, R. R., Quantified propositions in a linguistic logic, (Klement, E. P., Proc. 2nd Int. Seminar on Fuzzy Set Theory (1980), Johannes Kepler University: Johannes Kepler University Linz, Austria) · Zbl 0472.03019
[81] Yager, R. R., A foundation for a theory of possibility, J. Cybernetics, 10, 177-204 (1980) · Zbl 0438.94042
[82] Zadeh, L. A., Probability measures of fuzzy events, J. Math. Anal. Appl., 23, 421-427 (1968) · Zbl 0174.49002
[83] Zadeh, L. A., Similarity relations and fuzzy orderings, Inform. Sci., 3, 177-200 (1971) · Zbl 0218.02058
[84] Zadeh, L. A., Fuzzy languages and their relation to human and machine intelligence, (Proc. Int. Conf. on Man and Computer. Proc. Int. Conf. on Man and Computer, Bordeaux, France (1972), Karger: Karger Basel), 130-165
[85] Zadeh, L. A., Fuzzy logic and approximate reasoning (in memory of Grigore Moisil), Synthese, 30, 407-428 (1975) · Zbl 0319.02016
[86] Zadeh, L. A., The concept of a linguistic variable and its application to approximate reasoning, Inform. Sci., 9, 43-80 (1975) · Zbl 0404.68075
[87] Zadeh, L. A., Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems, 3-28 (1978) · Zbl 0377.04002
[88] Zadeh, L. A., PRUF—a meaning representation language for natural languages, Int. J. Man-Machine Studies, 10, 395-460 (1978) · Zbl 0406.68063
[89] Zadeh, L. A., (Hayes, J. E.; Michie, D.; Kulich, L. I., Machine Intelligence, 9 (1979), Wiley: Wiley New York), 149-194, also in · Zbl 0397.68071
[90] Zadeh, L. A., Inference in fuzzy logic, (Proc. 10th Inter. Symp. on Multiple-valued Logic (1980), Northwestern University), 124-131 · Zbl 0546.03014
[91] Zadeh, L. A., (Cobb, L.; Thrall, R. M., Mathematical Frontiers of the Social and Policy Sciences (1981), Westview Press: Westview Press Boulder), 69-129, also in · Zbl 0484.94046
[92] Zadeh, L. A., (Rieger, B. B., Empirical Semantics (1981), Brockmeyer: Brockmeyer Bochum), 281-349, also in · Zbl 0406.68063
[93] Zadeh, L. A., Fuzzy probabilities and their role in decision analysis, (Proc. 4th MIT/ONR Workshop on Command, Control and Communications (1981), M.I.T), 159-179 · Zbl 0532.90003
[94] Zimmer, A., Some experiments concerning the fuzzy meaning of logical quantifiers, (Troncoli, L., General Surveys of Systems Methodology (1982), Society for General Systems Research: Society for General Systems Research Louisville), 435-441
[95] Zimmermann, H.-J.; Zysno, P., Latent connectives in human decision making, Fuzzy Sets and Systems, 4, 37-52 (1980) · Zbl 0435.90009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.