×

zbMATH — the first resource for mathematics

Remarks on the algebraic approach to intersection theory. (English) Zbl 0518.14028

MSC:
14M10 Complete intersections
14C17 Intersection theory, characteristic classes, intersection multiplicities in algebraic geometry
12E12 Equations in general fields
14A05 Relevant commutative algebra
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bezout, É.: Sur le degré des équations résultantes de l’évanouissement des inconnus. Mémoires présentés par divers savants à l’Académie des sciences de l’Institut de France. 1764.
[2] Bezout, É.: Sur le degré résultant des méthodes d’élimination entre plusieurs équations. Mémoires présentés par divers savants à l’Academie des sciences de l’Institut de France. 1764.
[3] Bezout, É.: Sur le degré des équations résultantes de l’évanouissement des inconnus. Histoire de l’Académie Royale des Sciences, année 1764, 288–338 (1767).
[4] Bezout, É.: Théorie Générale des Équations Algébriques. Paris: Pierre. 1779.
[5] Boda, E., Vogel, W.: On system of parameters, local intersection multiplicity and Bezout’s Theorem. Proc. Amer. Math. Soc.78, 1–7 (1980). · Zbl 0436.13012 · doi:10.2307/2043026
[6] Euler, L.: Sur une contradiction apparente dans la doctrine des lignes courbes. In: Actis Berolinensibus. 1748.
[7] Fulton, W., MacPherson, R.: Defining algebraic intersections. In: Algebraic Geometry. Proc. Tromsø, Norway 1977, pp. 1–30. Lecture Notes Math 687. Berlin-Heidelberg-New York: Springer. 1978. · Zbl 0385.14002
[8] Fulton, W.: Intersection Theory. New York-Heidelberg-Berlin-Tokyo: Springer. 1983. · Zbl 0885.14002
[9] Gröbner, W.: Moderne algebraische Geometrie. Die idealtheoretischen Grundlagen. Wien-Innsbruck: Springer. 1949. · Zbl 0033.12706
[10] Gröbner, W.: Algebraische Geometrie I. Mannheim: BI-Wissensch. Verlag. 1968.
[11] Gröbner, W.: Algebraische Geometrie II. Mannheim: BI-Wissensch. Verlag. 1970.
[12] Jacobi, C. G. J.: De relationibus, quae locum habere debent inter puncta intersectionis duarum curvarum vel trium superficierum algebraicarum dati ordinis, simul cum enodatione paradoxi algebraici. J. Reine Angew. Math.15, 285–308 (1836). · ERAM 015.0513cj · doi:10.1515/crll.1836.15.285
[13] Kunz, E.: Einführung in die kommutative Algebra und algebraische Geometrie. Braunschweig-Wiesbaden: Vieweg. 1979. · Zbl 0432.13001
[14] Murthy, M. P.: Commutative Algebra I. Chicago: Dept. of Math. Univ. Chicago. 1975.
[15] Pieri, M.: Formule di coincidenza per le serie algebraiche die coppie di punti dello spazio an dimensioni. Rend. Circ. Mat. Palermo5, 225–268 (1891). · JFM 23.0700.02 · doi:10.1007/BF03015699
[16] Renschuch, B.: Verallgemeinerungen des Bezoutschen Satzes. Sitz. ber. Sächs. Akad. Wiss. Leipzig Math. Naturw. Kl.107, Heft 4, 1966. · Zbl 0151.27104
[17] Salmon, G., Fiedler, W.: Analytische Geometrie des Raumes, 2. Aufl. Leipzig: Teubner. 1874.
[18] Samuel, P.: Méthodes d’Algèbre Abstraite en Géométrie Algébrique. Berlin-Göttingen-Heidelberg: Springer. 1955.
[19] Serre, J.-P.: Algèbre Locale Multiplicités. Lectures Notes Math. 11. Berlin-Heidelberg-New York: Springer. 1965.
[20] Stückrad, J., Vogel, W.: An algebraic approach to the intersection theory. In: The Curves Seminars at Queen’s Vol. II, pp. 1–32. Kingston, Ontario, Canada. 1982.
[21] Vogel, W.: On Bezout’s Theorem. In: SeminarD. Eisenbud/B. Singh/W. Vogel, Vol. 1, pp. 113–144. Leipzig: Teubner. 1980. · Zbl 0444.14032
[22] Vogel, W.: Remark on the number of componets of the intersection of projective subvarieties. Iraqi J. Sci. (To appear.) · Zbl 0603.14001
[23] Vogel, W.: Old and new problems about Bezout’s Theorem. Preprint. 1982.
[24] Vogel, W.: Lectures on Results on Bezout’s Theorem (Notes byD. P. Patil). Tata Institute of Fundamental Research, Bombay. (To appear.)
[25] Weil, A.: Foundations of Algebraic Geometry. Providence, R. I.: Amer. Math. Soc. 1962. · Zbl 0168.18701
[26] Zariski, O., Samuel, P.: Commutative Algebra, Vol. I and II. Princeton: van Nostrand. 1958 and 1960. · Zbl 0081.26501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.