×

The transitive groups of degree up to eleven. (English) Zbl 0518.20003


MSC:

20B20 Multiply transitive finite groups
20-04 Software, source code, etc. for problems pertaining to group theory
20B05 General theory for finite permutation groups
20B35 Subgroups of symmetric groups
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Atkinson Michael D., Math.Comp 29 pp 911– (1975) · doi:10.1090/S0025-5718-1975-0367030-3
[2] Burckhardt H., Groupes de substitutions, Encyclopédie des sciences mathématiques pures et appliquées (1909)
[3] Butler G., J. Algorithms 29 (1982)
[4] Cannon John J., Proc. AMS Symp. Pure Math 37 pp 445– (1980)
[5] McKay John, SIAM J. Computing 8 pp 344– (1979) · Zbl 0426.12015 · doi:10.1137/0208026
[6] McKay John, Comm. Algebra 7 pp 1407– (1979) · Zbl 0418.20009 · doi:10.1080/00927877908822410
[7] Miller G.A., Quart, J. PureAppl. Math 28 pp 193– (1896)
[8] Neubüser Joachim, Numer. Math 2 pp 280– (1960) · Zbl 0101.01802 · doi:10.1007/BF01386229
[9] Sims, Charles C. Computational methods in the study of permutation groups, Computational Problems in Abstract Algebra. Proc. Conf. 1967, Oxford. Edited by: Leech, John. pp.169–183. Oxford: Pergamon.
[10] Soicher Leonard, M. Comp. Sc. Thesis (1981)
[11] Stauduhar R.P., Math. Comp 27 pp 981– (1973) · doi:10.1090/S0025-5718-1973-0327712-4
[12] Wielandt Helmut, Finite Permutation Groups (1964)
[13] Zassenhaus Hans, The Theory of Groups (1958)
[14] Biggs N.L., Bull L.M.S 13 pp 97– (1981) · Zbl 0454.01015 · doi:10.1112/blms/13.2.97
[15] Soicher & L., Computing Galois groups over the rationals · Zbl 0579.12006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.