A result on extension of C. R. functions. (English) Zbl 0518.32010


32D15 Continuation of analytic objects in several complex variables
32F99 Geometric convexity in several complex variables
Full Text: DOI Numdam EuDML


[1] A. ANDREOTTI and C.D. HILL, E.E. convexity and the H. lewy problem. Part I : Reduction to vanishing theorems, Ann. Scuola Normale Sup. di Pisa, 26 (1972). · Zbl 0256.32007
[2] A. ANDREOTTI and E. VESENTINI, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Publ. IHES, vol. 24-25. · Zbl 0138.06604
[3] M.S. BAOUENDI and F. TREVES, A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. Math., 113 (1981). · Zbl 0491.35036
[4] E. BEDFORD and J.E. FORNAESS, Local extension of C.R. function from weakly pseudoconvex boundaries, Michigan Math. J., 25. · Zbl 0401.32007
[5] A. BOGGES, C.R. extendability near a point where the first leviform vanishes, Duke Math. J., 43 (3). · Zbl 0509.32006
[6] M. DERRIDJ, Inégalités de Carleman et extension locale des fonctions holomorphes, Annali. Sci. Norm. Pisa, Serie IV vol. IX (1981). · Zbl 0548.32013
[7] C.D. HILL and TAÏANI, Families of analytic discs in cn with boundaries on a prescribed C.R. submanifold, Ann. Scuola Norm. Pisa, 4-5 (1978). · Zbl 0399.32008
[8] L. HÖRMANDER, Introduction to complex analysis in several variables, van Nostrand. · Zbl 0138.06203
[9] L. HÖRMANDER, L²-estimates and existence theorems for the ∂-operator, Acta Math., 113 (1965). · Zbl 0158.11002
[10] J.J. KOHN and H. ROSSI, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. Math., 81 (1965). · Zbl 0166.33802
[11] H. LEWY, On the local character... Ann. Math., 64 (1956). · Zbl 0074.06204
[12] R. NIRENBERG, On the lewy extension phenomenon, Trans. Amer. Math. Soc., 168 (1972). · Zbl 0241.32006
[13] R.O. WELLS, On the local holomorphic hull... Comm. P.A.M., vol. XIX (1966). · Zbl 0142.33901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.