zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Piecewise linear regularized solution paths. (English) Zbl 1194.62094
Summary: We consider the generic regularized optimization problem $\widehat{\beta}(\lambda)= \arg\min_\beta L(y,X\beta)+ \lambda J(\beta)$. {\it B. Efron, T. Hastie, I. Johnstone} and {\it R. Tibshirani} [Ann. Stat. 32, No. 2, 407--499 (2004; Zbl 1091.62054)] have shown that for the LASSO -- that is, if $L$ is the squared error loss and $J(\beta)= \|\beta\|_1$ is the $\ell_1$ norm of $\beta$ -- the optimal coefficient path is piecewise linear, that is, $\partial\widehat{\beta}(\lambda)/ \partial\lambda$ is piecewise constant. We derive a general characterization of the properties of (loss $L$, penalty $J$) pairs which give piecewise linear coefficient paths. Such pairs allow for efficient generation of the full regularized coefficient paths. We investigate the nature of efficient path following algorithms which arise. We use our results to suggest robust versions of the LASSO for regression and classification, and to develop new, efficient algorithms for existing problems in the literature, including Mammen and van de Geer’s locally adaptive regression splines.

MSC:
62J99Linear statistical inference
65C60Computational problems in statistics
90C90Applications of mathematical programming
62H30Classification and discrimination; cluster analysis (statistics)
WorldCat.org
Full Text: DOI arXiv
References:
[1] Davies, P. L. and Kovac, A. (2001). Local extremes, runs, strings and multiresolution (with discussion). Ann. Statist. 29 1--65. · Zbl 1029.62038 · doi:10.1214/aos/996986501
[2] Donoho, D., Johnstone, I., Kerkyacharian, G. and Picard, D. (1995). Wavelet shrinkage: Asymptopia? (with discussion). J. Roy. Statist. Soc. Ser. B 57 301--369. JSTOR: · Zbl 0827.62035 · http://links.jstor.org/sici?sici=0035-9246%281995%2957%3A2%3C301%3AWSA%3E2.0.CO%3B2-S&origin=euclid
[3] Efron, B., Hastie, T., Johnstone, I. M. and Tibshirani, R. (2004). Least angle regression (with discussion). Ann. Statist. 32 407--499. · Zbl 1091.62054 · doi:10.1214/009053604000000067
[4] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348--1360. JSTOR: · Zbl 1073.62547 · doi:10.1198/016214501753382273 · http://links.jstor.org/sici?sici=0162-1459%28200112%2996%3A456%3C1348%3AVSVNPL%3E2.0.CO%3B2-2&origin=euclid
[5] Fan, J. and Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Ann. Statist. 32 928--961. · Zbl 1092.62031 · doi:10.1214/009053604000000256
[6] Freund, Y. and Schapire, R. E. (1996). Experiments with a new boosting algorithm. In Proc. 13th International Conference on Machine Learning 148--156. Morgan Kauffman, San Francisco.
[7] Hastie, T., Rosset, S., Tibshirani, R. and Zhu, J. (2004). The entire regularization path for the support vector machine. J. Mach. Learn. Res. 5 1391--1415. · Zbl 1222.68213 · http://www.jmlr.org/papers/v5/hastie04a.html
[8] Hastie, T., Tibshirani, R. and Friedman, J. (2001). The Elements of Statistical Learning : Data Mining , Inference and Prediction . Springer, New York. · Zbl 0973.62007
[9] Hoerl, A. and Kennard, R. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12 55--67. · Zbl 0202.17205 · doi:10.2307/1267351
[10] Huber, P. (1964). Robust estimation of a location parameter. Ann. Math. Statist. 35 73--101. · Zbl 0136.39805 · doi:10.1214/aoms/1177703732
[11] Koenker, R. (2005). Quantile Regression . Cambridge Univ. Press. · Zbl 1111.62037
[12] Koenker, R., Ng, P. and Portnoy, S. (1994). Quantile smoothing splines. Biometrika 81 673--680. JSTOR: · Zbl 0810.62040 · doi:10.1093/biomet/81.4.673 · http://links.jstor.org/sici?sici=0006-3444%28199412%2981%3A4%3C673%3AQSS%3E2.0.CO%3B2-Q&origin=euclid
[13] Mammen, E. and van de Geer, S. (1997). Locally adaptive regression splines. Ann. Statist. 25 387--413. · Zbl 0871.62040 · doi:10.1214/aos/1034276635
[14] Osborne, M., Presnell, B. and Turlach, B. (2000). On the LASSO and its dual. J. Comput. Graph. Statist. 9 319--337. JSTOR: · doi:10.2307/1390657 · http://links.jstor.org/sici?sici=1061-8600%28200006%299%3A2%3C319%3AOTLAID%3E2.0.CO%3B2-M&origin=euclid
[15] Rosset, S., Zhu, J. and Hastie, T. (2004). Boosting as a regularized path to a maximum margin classifier. J. Mach. Learn. Res. 5 941--973. · Zbl 1222.68290 · http://www.jmlr.org/papers/v5/rosset04a.html
[16] Shen, X., Tseng, G., Zhang, X. and Wong, W. H. (2003). On $\psi$-learning. J. Amer. Statist. Assoc. 98 724--734. · Zbl 1052.62095 · doi:10.1198/016214503000000639
[17] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267--288. JSTOR: · Zbl 0850.62538 · http://links.jstor.org/sici?sici=0035-9246%281996%2958%3A1%3C267%3ARSASVT%3E2.0.CO%3B2-G&origin=euclid
[18] Tibshirani, R., Saunders, M., Rosset, S., Zhu, J. and Knight, K. (2005). Sparsity and smoothness via the fused lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 91--108. · Zbl 1060.62049 · doi:10.1111/j.1467-9868.2005.00490.x
[19] Tsuda, K. and Ratsch, G. (2005). Image reconstruction by linear programming. IEEE Trans. Image Process. 14 737--744.
[20] Vapnik, V. (1995). The Nature of Statistical Learning Theory . Springer, New York. · Zbl 0833.62008
[21] Zhu, J., Rosset. S., Hastie, T. and Tibshirani, R. (2003). 1-norm support vector machines. In Advances in Neural Information Processing Systems 16 .