2LEV-D2P4: a package of high-performance preconditioners for scientific and engineering applications. (English) Zbl 1122.65046

Summary: We present a package of parallel preconditioners which implements one-level and two-level domain decomposition algorithms on the top of the PSBLAS library for sparse matrix computations. The package, named 2LEV-D2P4 (Two-LEVel Domain Decomposition Parallel Preconditioners Package based on PSBLAS), currently includes various versions of additive Schwarz preconditioners that are combined with a coarse-level correction to obtain two-level preconditioners. A pure algebraic formulation of the preconditioners is considered. 2LEV-D2P4 has been written in Fortran 95, exploiting features such as abstract data type creation, functional overloading and dynamic memory management, while providing a smooth path towards the integration in legacy application codes. The package, used with Krylov solvers implemented in PSBLAS, has been tested on large-scale linear systems arising from model problems and real applications, showing its effectiveness.


65F35 Numerical computation of matrix norms, conditioning, scaling
65F10 Iterative numerical methods for linear systems
65Y15 Packaged methods for numerical algorithms
65Y05 Parallel numerical computation
Full Text: DOI


[1] Bank R.E. and Douglas C.C. (1993). SMMP: sparse matrix multiplication package. Adv. Comput. Math. 1: 127–137 · Zbl 0824.65024
[2] Bella G., Filippone S., De Maio A. and Testa M. (2005). A simulation model for forest fires. In: Dongarra, K.M.J. and Wasniewski, J. (eds) Proceedings of PARA04 Workshop on State of the Art in Scientific Computing, pp 546–553. Springer, Heidelberg
[3] Brezina M. and Vaněk P. (1999). A black-box iterative solver based on a two-level Schwarz method. Computing 63: 233–263 · Zbl 0951.65133
[4] Buttari A., D’Ambra P., Filippone S. and Serafino D. (2005). Extending PSBLAS to build parallel schwarz preconditioners. In: Dongarra, K.M.J. and Wasniewski, J (eds) Proceedings of PARA04 Workshop on State of the Art in Scientific Computing, pp 593–602. Springer, Heidelberg
[5] Buttari, A., D’Ambra, P., di Serafino, D., Filippone, S.: 2LEV-D2P4 User’s Guide (in preparation)
[6] Cai X.C. and Saad Y. (1996). Overlapping domain decomposition algorithms for general sparse matrices. Num. Linear Algebra Appl. 3(3): 221–237 · Zbl 0851.65083
[7] Cai X.C. and Sarkis M. (1999). A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 21(2): 792–797 · Zbl 0944.65031
[8] Cai X.C. and Widlund O.B. (1992). Domain decomposition algorithms for indefinite elliptic problems. SIAM J. Sci. Stat. Comput. 13(1): 243–258 · Zbl 0746.65085
[9] Chan T. and Mathew T. (1994). Domain decomposition algorithms. In: Iserles, A. (eds) Acta Numerica, pp 61–143. Cambridge University Press, Cambridge · Zbl 0809.65112
[10] D’Ambra, P., di Serafino, D., Filippone, S.: On the development of PSBLAS-based parallel two-level Schwarz preconditioners. Appl. Num. Math. (to appear) (2007) · Zbl 1123.65029
[11] Davis, T.: University of Florida sparse matrix collection home page. http://www.cise.ufl.edu/research/sparse/matrices · Zbl 1365.65123
[12] Davis T.A. (2004). Algorithm 832: UMFPACK–an unsymmetric-pattern multifrontal method with a column pre-ordering trategy. ACM Trans. Math. Softw. 30: 196–199 · Zbl 1072.65037
[13] Dongarra, J., Whaley, R.: A user’s guide to the BLACS v1.0. LAPACK working note #94 CS-95-281, University of Tennessee (1995) http://www.netlib.org/lapack/lawns
[14] Duff I., Heroux M. and Pozo R. (2002). An overview of the sparse basic linear algebra subprograms: the new standard from the BLAS technical forum. ACM Trans. Math. Softw. 28(2): 239–267 · Zbl 1070.65521
[15] Duff I., Marrone M., Radicati G. and Vittoli C. (1997). Level 3 basic linear algebra subprograms for sparse matrices: a user level interface. ACM Trans. Math. Softw. 23(3): 379–401 · Zbl 0903.65041
[16] Filippone S. and Colajanni M. (2000). PSBLAS: A library for parallel linear algebra computation on sparse matrices. ACM Trans. Math. Softw. 26(4): 527–550 · Zbl 1365.65128
[17] Filippone S., D’Ambra P. and Colajanni M. (2002). Using a parallel library of sparse linear algebra in a fluid dynamics applications code on linux clusters. In: Joubert, G., Murli, A., Peters, F., and Vanneschi, M. (eds) Proceedings of Parallel Computing–Advances and Current Issues, pp 441–448. Imperial College Press, London
[18] Heroux M.A., Bartlett R.A., Howle V.E., Hoekstra R.J., Hu J.J., Kolda T.G., Lehoucq R.B., Long K.R., Pawlowski R.P., Phipps E.T., Salinger A.G., Thornquist H.K., Tuminaro R.S., Willenbring J.M., Williams A. and Stanley K.S. (2005). An overview of the Trilinos project. ACM Trans. Math. Softw. 31(3): 397–423 · Zbl 1136.65354
[19] Karypis G. and Kumar V. (1999). A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1): 359–392 · Zbl 0915.68129
[20] Li X.S. and Demmel J.W. (2003). SuperLU-DIST: a scalable distributed-memory sparse direct solver for unsymmetric linear systems. ACM Trans. Math. Softw. 29(2): 110–140 · Zbl 1068.90591
[21] Smith B., Bjorstad P. and Gropp W. (1996). Domain decomposition: parallel multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge · Zbl 0857.65126
[22] Snir M., Otto S., Huss-Lederman S., Walker D. and Dongarra J. (1998). MPI: The Complete Reference, The MPI Core, vol. 1, 2nd edn. MIT, Cambridge
[23] Tuminaro, R.S., Tong, C.: Parallel smoothed aggregation multigrid: aggregation strategies on massively parallel machines. In: Donnelley, J. (ed.) Proceedings of SuperComputing 2000. Dallas, (2000)
[24] Vaněk P., Mandel J. and Brezina M. (1996). Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56: 179–196 · Zbl 0851.65087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.