Hartshorne, Robin Stable reflexive sheaves. II. (English) Zbl 0519.14008 Invent. Math. 66, 165-190 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 6 ReviewsCited in 30 Documents MSC: 14F05 Sheaves, derived categories of sheaves, etc. (MSC2010) 57R20 Characteristic classes and numbers in differential topology 14H10 Families, moduli of curves (algebraic) Keywords:reflexive sheaves of rank 2; Chern class; c2; unstable surface; space curves Citations:Zbl 0437.14008; Zbl 0431.14004 PDFBibTeX XMLCite \textit{R. Hartshorne}, Invent. Math. 66, 165--190 (1982; Zbl 0519.14008) Full Text: DOI EuDML References: [1] Barth, W.: Some properties of stable rank 2 vector bundles on ? n . Math. Ann.226, 125-150 (1977) · doi:10.1007/BF01360864 [2] Barth, W.: Stable vector bundles on ?3, some experimental data. In: Les équations de Yang-Mills, Séminaire Douady-Verdier, Astérisque71-72, 205-218 (1980) [3] Ein, L., Hartshorne, R., Vogelaar, H.: Restriction theorems for stable rank 3 reflexive sheaves on ?3. (to appear) (1982) · Zbl 0511.14008 [4] Hartshorne, R.: Stable vector bundles of rank 2 on ?3. Math. Ann.238, 229-280 (1978) · Zbl 0411.14002 · doi:10.1007/BF01420250 [5] Hartshorne, R.: Algebraic vector bundles on projective spaces: A problem list. Topology18, 117-128 (1979) · Zbl 0417.14011 · doi:10.1016/0040-9383(79)90030-2 [6] Hartshorne, R.: On the classification of algebraic space curves. In: Vector bundles and differential equations (Nice 1979), pp. 83-112. Birkhäuser 1980 [7] Hartshorne, R.: Stable reflexive sheaves. Math. Ann.254, 121-176 (1980) · doi:10.1007/BF01467074 [8] Hartshorne, R., Hirschowitz, A.: Cohomology of a general instanton bundle. Ann. Sci. Ec. Norm. Sup. (to appear) (1982) · Zbl 0509.14015 [9] Hartshorne, R., Sols, I.: Stable rank 2 vector bundles on ?3 withc 1=?1,c 2=2. Crelle J.325, 145-152 (1981) · Zbl 0448.14004 [10] Hirschowitz, A.: Sur la postulation générique des courbes rationnelles. Acta Math. (Uppsala)146, 209-230 (1981) · Zbl 0475.14027 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.