zbMATH — the first resource for mathematics

Sectionwise properties and measurability of functions of two variables. (English) Zbl 0519.26007
26B35 Special properties of functions of several variables, Hölder conditions, etc.
28A20 Measurable and nonmeasurable functions, sequences of measurable functions, modes of convergence
26A21 Classification of real functions; Baire classification of sets and functions
Zbl 0382.26005
Full Text: DOI
[1] A. M. Bruckner,Differentiation of Real Functions, Lecture Notes in Math. No. 659, Springer (Berlin, Heidelberg, New York, 1978). · Zbl 0382.26002
[2] R. O. Davies, Separate approximate continuity implies measurability,Proc. Camb. Phil. Soc.,73 (1973), 461–465. · Zbl 0254.26011
[3] R. O. Davies and J. Dravecký, On the measurability of functions of two variables,Mat. Časopis,23 (1973), 285–289. · Zbl 0262.28004
[4] Z. Grande, La mesurabilité des fonctions de deux variables,Bull. Acad. Polon. Sci. Math. Astr. Phys.,22 (1974), 657–661. · Zbl 0287.28003
[5] Z. Grande, Quelques remarques sur les classes de Baire des fonctions de deux variables,Mat. Časopis,26 (1976), 241–246. · Zbl 0382.26005
[6] Z. Grande, Sur les fonctions de deux variables dont les coupes sont des dérivées,Proc. Amer. Math. Soc.,57 (1976), 69–74. · Zbl 0305.26005
[7] C. Kuratowski,Topologie I (Warszawa, 1958).
[8] M. Laczkovich, On the measurability of functions whose sections are derivatives.,Periodica Math. Hung.,12 (1981), 243–254. · Zbl 0449.26009
[9] M. Laczkovich, On the Baire class of functions of two variables, to appear inFund. Math. · Zbl 0378.26006
[10] J. S. Lipiński, On measurability of functions of two variables,Bull. Acad. Polon. Sci. Math. Astr. Phys.,20 (1972), 131–135. · Zbl 0228.28009
[11] W. Sierpiński, Sur les rapports entre l’existence des intégrales \(\mathop \smallint \limits_0^1 f(x,y)dx, \mathop \smallint \limits_0^1 f(x,y)dy\) et \(\mathop \smallint \limits_0^1 dx \mathop \smallint \limits_0^1 f(x,y)dy\) ,Fund. Math.,1 (1920), 142–147.
[12] Z. Zahorski, Sur la première dérivée,Trans. Amer. Math. Soc.,69 (1950), 1–54.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.