×

zbMATH — the first resource for mathematics

On measures and integrals with values in ordered groups. (English) Zbl 0519.28004

MSC:
28B10 Group- or semigroup-valued set functions, measures and integrals
28B15 Set functions, measures and integrals with values in ordered spaces
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] ALFSEN E. M.: Order preserving maps and integration processes. Math. Ann. 149, 1963, 419-461. · Zbl 0111.25605
[2] CRISTESCU R.: Spatii liniare si operatori liniari. Bucuresti 1971.
[3] FREMLIN D. H.: A direct proof of the Mathes-Wright integral extension theorem. J. London. Math. Soc. 11, 1975, 276-284. · Zbl 0313.06016
[4] KANTOROVIČ L. V.: Sur la continuité et sur le prolongement des opérations linéaires. C. R. Acad. Sci. de ľU. R. S. S. 206, 1938, 833-835.
[5] RIEČAN B.: О нєпрєрывном продолжєнии монотонных функционалов нєкоторого типа. Mat.-fyz. čas. 15, 1965, 116-125.
[6] RIEČAN B.: О продолжєнии опєраторов с значєниями в линєйных полупорядочєнных пространствах. Čas. pěst. mat. 93, 1968, 459-471.
[7] RIEČAN B.: On the lattice group valued measures. Čas. pěst. mat. 101, 1976, 343-349.
[8] RIEČAN B.: A simplified proof of the Daniell integral extension theorem in ordered spaces. Math. Slovaca 32, 1982, 75-79.
[9] VOLAUF P.: Extension and regularity of l-group valued measures. Math. Slovaca 27, 1977, 47-53. · Zbl 0348.28012
[10] VOLAUF P.: On extension of maps with values in ordered spaces. Math. Slovaca 30, 1980, 351-361. · Zbl 0448.28007
[11] VONKOMEROVÁ M.: On the extension of positive continuous operators. Math Slovaca 31, 1981, 251-262.
[12] WRIGHT J. D. M.: The measure extension problem for vector lattices. Ann. Inst. Fourier Grenoble 21, 1971, 65-85. · Zbl 0215.48101
[13] RIEČAN B., VOLAUF P.: On a technical lemma in lattice ordered groups. Acta Math. Univ. Comen., to appear. · Zbl 0558.06019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.