Regularity and integrability of spherical means. (English) Zbl 0519.42018


42B99 Harmonic analysis in several variables
42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
Full Text: DOI EuDML


[1] Erd?lyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.: Higher Transcendental Functions. Vol. 2. New York-Toronto-London: MacGraw-Hill. 1953. · Zbl 0051.30303
[2] Gradshteyn, I. S., Ryzhik, I. M.: Table of Integrals, Series, and Products. New York-London: Academic Press. 1980. · Zbl 0521.33001
[3] Oberlin, D. M., Stein, E. M.: Mapping properties of the Radon transform. Indiana Univ. Math. J.31, 641-650 (1982). · Zbl 0548.44003
[4] Peyri?re, J., Sj?lin, P.: Regularity of spherical means. Ark. Mat.16, 117-126 (1978). · Zbl 0493.46033
[5] Sj?lin, P.: Lipschitz continuity of spherical means. In: Linear Spaces and Approximation. Proc. Conf. Oberwolfach, 1977. Ed. byP. L. Butzer undB. Sz. Nagy, pp. 229-234. Basel-Stuttgart: Birkh?user. 1978.
[6] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions. Princeton: Univ. Press. 1970. · Zbl 0207.13501
[7] Stein, E. M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton: Univ. Press. 1971. · Zbl 0232.42007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.