×

On uniformly convex functions. (English) Zbl 0519.49010


MSC:

49J45 Methods involving semicontinuity and convergence; relaxation
26A51 Convexity of real functions in one variable, generalizations
26B25 Convexity of real functions of several variables, generalizations
90C55 Methods of successive quadratic programming type
90C25 Convex programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Polyak, B. T., Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Dokl. Akad. Nauk. SSSR, 166, 287-290 (1966), [Russian] · Zbl 0171.09501
[2] Rockafellar, R. T., Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14, 877-898 (1976) · Zbl 0358.90053
[3] Vladimirov, A. A.; Nesterov, Yu. E.; Chekanov, Yu. N., On uniformly convex functionals, Vestnik Moskov. Univ. Ser. XV Vyčisl. Mat. Kibernet., No. 3, 12-23 (1978), [Russian] · Zbl 0442.47046
[4] Vladimirov, A. A.; Nesterov, Yu. E.; Chekanov, Yu. N., On uniformly quasi-convex functional, Vestnik Moskov. Univ. Ser. XV Vyčisl. Mat. Kibernet., No. 4, 18-27 (1978), [Russian] · Zbl 0453.47047
[5] Vial, J.-Ph., Strong convexity of sets and functions, CORE Discussion Paper, 8018 (1980)
[6] Zolezzi, T., On equiwellset minimum problems, Appl. Math. Optim., 4, 209-223 (1978) · Zbl 0381.90105
[7] Ilioi, C., Optimization Problems and Algorithms for Approximate Solutions (1980), Editura Academiei RSR: Editura Academiei RSR Bucharest, [Rumanian] · Zbl 0486.49019
[8] Ciorǎnescu, I., Duality Mappings in the Nonlinear Functional Analysis (1974), Editura Academiei RSR: Editura Academiei RSR Bucharest, [Rumanian]
[9] Rockafellar, R. T., Convex Analysis (1969), Princeton Univ. Press: Princeton Univ. Press Princeton, N. J · Zbl 0202.33804
[10] Barbu, V.; Precupanu, Th., Convexity and Optimization in Banach Spaces (1978), Editura Academiei, Bucharest/Sijthoff & Noordhoff Int. Publishers · Zbl 0379.49010
[11] Diestel, J., Geometry of Banach spaces—Selected topics, (Lecture Notes in Mathematics No. 485 (1975), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York) · Zbl 0307.46009
[12] Rockafellar, R. T., Local boundedness of nonlinear monotone operators, Michigan Math. J., 16, 397-407 (1969) · Zbl 0175.45002
[13] Rockafellar, R. T., Integral functionals, normal integrands and measurable selections, (Gossez, J. P.; Dozo, E. J.Lami; Mawhin, J.; Waelbroeck, L., Nonlinear Operators and the Calculus of Variations, Bruxelles 1975. Nonlinear Operators and the Calculus of Variations, Bruxelles 1975, Lecture Notes in Mathematics, No. 543 (1976), Springer-Verlag: Springer-Verlag New York/Berlin) · Zbl 0374.49001
[14] Asplund, E., Positivity of duality mappings, Bull. Amer. Math. Soc., 73, 200-203 (1967) · Zbl 0149.36202
[15] Ekeland, I.; Temam, R., Analyse convexes et problèmes variationels (1974), Dunod/Gauthier-Villars: Dunod/Gauthier-Villars Paris · Zbl 0281.49001
[16] Zǎlinescu, C., A generalization of the Farkas lemma and applications to convex programming, J. Math. Anal. Appl., 66, 651-678 (1978) · Zbl 0396.90070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.