Min-Oo, Maung An \(L_ 2\)-isolation theorem for Yang-Mills fields. (English) Zbl 0519.53042 Compos. Math. 47, 153-163 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 14 Documents MSC: 53C20 Global Riemannian geometry, including pinching 58E15 Variational problems concerning extremal problems in several variables; Yang-Mills functionals 58J60 Relations of PDEs with special manifold structures (Riemannian, Finsler, etc.) Keywords:isolation phenomena; Yang-Mills fields; Sobolev inequalities PDF BibTeX XML Cite \textit{M. Min-Oo}, Compos. Math. 47, 153--163 (1982; Zbl 0519.53042) Full Text: Numdam EuDML OpenURL References: [1] M.F. Atiyah , V.G. Drinfeld , N.J. Hitchin and Y.I. Manin : Construction of instantons . Phys. Lett. 65A (1978) 185-187. · Zbl 0424.14004 [2] M.F. Atiyah , N.J. Hitchin and I.M. Singer : Self-duality in four-dimensional riemannian geometry . Proc. Royal Soc. London A 362 (1978) 425-461. · Zbl 0389.53011 [3] J.P. Bourguignon , H.B. Lawson, Jr. and J. Simons : Stability and gap phenomena for Yang-Mills fields . Proc. Nat. Acad. Sci. U.S.A. 76 (1979) 1550-1553. · Zbl 0408.53023 [4] J.P. Bourguignon and H.B. Lawson, Jr. : Stability and isolation phenomena for Yang-Mills fields . Comm. Math. Phys. 79 (1981) 189-230. · Zbl 0475.53060 [5] V.G. Drinfeld and Y.I. Manin : A description of instantons . Comm. Math. Phys. 63 (1978) 177-192. · Zbl 0407.22017 [6] P. Li : On the Sobolev constant and the p-Spectrum of a compact Riemannian manifold, Ann. scient . Éc. Norm. Sup., 4e série, t. 13, 1980, pp 451-469. · Zbl 0466.53023 [7] C.-L. Shen : On the sourceless SU(N) gauge field over a four-dimensional self-dual compact riemannian manifold with positive scalar curvature , preprint. · Zbl 0519.53043 [8] I.M. Singer and J.A. Thorpe : The curvature of 4-dimensional Einstein spaces . In: Global analysis, Papers in honor of K. Kodaira . Princeton Univ. Press, Princeton, 1969, pp 355-365. · Zbl 0199.25401 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.