zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Algebraic geometry of Bayesian networks. (English) Zbl 1126.68102
Summary: We study the algebraic varieties defined by the conditional independence statements of Bayesian networks. A complete algebraic classification is given for Bayesian networks on at most five random variables. Hidden variables are related to the geometry of higher secant varieties.

68W30Symbolic computation and algebraic computation
68T05Learning and adaptive systems
13P10Gröbner bases; other bases for ideals and modules
14N05Projective techniques (algebraic geometry)
Full Text: DOI arXiv
[1] Barradas, I.; Solis, F.: Nonnegative rank. Int. math. J. 1, 601-610 (2002) · Zbl 1221.15023
[2] Catalano-Johnson, M.: The homogeneous ideals of higher secant varieties. J. pure appl. Algebra 158, 123-129 (2001) · Zbl 1006.14021
[3] Catalisano, M. V.; Geramita, A. V.; Gimigliano, A.: Ranks of tensors, secant varieties of Segre varieties and fat points. Linear algebra appl. 335, 263-285 (2002) · Zbl 1059.14061
[4] Cox, D.; Little, J.; O’shea, D.: Ideals, varieties and algorithms. Springer undergraduate texts in mathematics (1997)
[5] Decker, W.; Greuel, G. -M.; Pfister, G.: Primary decomposition: algorithms and comparisons. Algorithmic algebra and number theory, Heidelberg, 1997, 187-220 (1999) · Zbl 0932.13019
[6] Eisenbud, D.; Sturmfels, B.: Binomial ideals. Duke math. J. 84, 1-45 (1996) · Zbl 0873.13021
[7] Geiger, D.; Heckerman, D.; King, H.; Meek, C.: Stratified exponential families: graphical models and model selection. Ann. statist. 29, 505-529 (2001) · Zbl 1012.62012
[8] Geiger, D., Meek, C., Sturmfels, B., 2002. On the toric algebra of graphical models (manuscript) · Zbl 1104.60007
[9] Goodman, L.: Explanatory latent structure analysis using both identifiable and unidentifiable models. Biometrika 61, 215-231 (1974) · Zbl 0281.62057
[10] Grayson, D.; Stillman, M.: Macaulay2: A system for computation in algebraic geometry and commutative algebra. (1996)
[11] Greuel, G. -M.; Pfister, G.; Schönemann, H.: Singular 2.0: A computer algebra system for polynomial computations, university of Kaiserslautern. (2001)
[12] Harris, J., 1992. Algebraic Geometry: A First Course. Springer Graduate Texts in Mathematics · Zbl 0779.14001
[13] Lauritzen, S. L.: Graphical models. (1996) · Zbl 0907.62001
[14] Matúš, F.: Conditional independences among four random variables. III. final conclusion. Combin. probab. Comput. 8, 269-276 (1999) · Zbl 0941.60004
[15] Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. (1988) · Zbl 0746.68089
[16] Pistone, G.; Riccomagno, E.; Wynn, H.: Algebraic statistics: computational commutative algebra in statistics. (2001) · Zbl 0960.62003
[17] Settimi, R.; Smith, J. Q.: Geometry, moments and conditional independence trees with hidden variables. Ann. stat. 28, 1179-1205 (2000) · Zbl 1105.62321
[18] Settimi, R.; Smith, J. Q.: On the geometry of Bayesian graphical models with hidden variables. Proceedings of the fourteenth conference on uncertainty in artificial intelligence, 472-479 (1998)
[19] Shimoyama, T.; Yokoyama, K.: Localization and primary decomposition of polynomial ideals. J. symbolic comput. 22, 247-277 (1996) · Zbl 0874.13022
[20] Strassen, V.: Rank and optimal computation of generic tensors. Linear algebra appl. 52/53, 645-685 (1983) · Zbl 0514.15018
[21] Studený, M., 2001. On mathematical description of probabilistic conditional independence structures. Dr.Sc. Thesis, Prague, May. Posted at http://www.utia.cas.cz/user_data/studeny/studeny_home.html
[22] Sturmfels, B.: Gröbner bases and convex polytopes. American mathematical society, university lectures series 8 (1996) · Zbl 0856.13020
[23] Sturmfels, B.: Solving systems of polynomial equations. CBMS lectures series (2002) · Zbl 1101.13040