Efficient implementation of THINC scheme: a simple and practical smoothed VOF algorithm. (English) Zbl 1388.76281

Summary: We improve the multi-dimensional THINC (tangent of hyperbola for interface capturing) scheme [F. Xiao et al., Int. J. Numer. Methods Fluids 48, No. 9, 1023–1040 (2005; Zbl 1072.76046)]. The THINC scheme is a VOF (volume of fluid) type method. In the original THINC scheme, one-dimensional THINC scheme was straightforwardly used for multi-dimensional cases. In this paper, we propose the WLIC (weighed line interface calculation) method to extend the THINC scheme to multi-dimension. In the WLIC method, the interface is reconstructed by taking an average of line interfaces along x, y and z coordinates with the weights calculated from surface normal. The WLIC method can extend the THINC scheme to multi-dimension while maintaining simplicity of implementation and achieve a higher accuracy than the original THINC scheme. The WLIC method can readily extend the THINC scheme to three-dimension.


76M25 Other numerical methods (fluid mechanics) (MSC2010)
76T99 Multiphase and multicomponent flows


Zbl 1072.76046


Full Text: DOI


[1] Xiao, F.; Honma, Y.; kono, T., A simple algebraic interface capturing scheme using hyperbolic tangent function, Int. J. numer. meth. fluid., 48, 1023, (2005) · Zbl 1072.76046
[2] Unverdi, S.O.; Tryggvason, G., A front tracking method for viscous, incompressible multi-fluid flow, J. comput. phys., 100, 25, (1992) · Zbl 0758.76047
[3] Glimm, J., Front tracking in two and three dimensions, J. comput. mech., 7, 1, (1998) · Zbl 1010.68538
[4] Osher, S.; Sethian, J.A., Front propagating with curvature-dependent speed: algorithms based on hamilton – jacobi formulation, J. comput. phys., 79, 12, (1988) · Zbl 0659.65132
[5] Sussman, M.; Smereka, P.; Osher, S., A level set approach for capturing solution to incompressible two-phase flow, J. comput. phys., 114, 146, (1994) · Zbl 0808.76077
[6] Sussman, M.; Smereka, P., Axisymmetric free boundary problems, J. fluid mech., 341, 269, (1997) · Zbl 0892.76090
[7] Sussman, M.; Fatemi, E., An efficient, interface preserving level set re-distancing algorithm and its application to interfacial incompressible fluid flow, SIAM J. sci. comput., 20, 1165, (1999) · Zbl 0958.76070
[8] Sethian, J.A., Level set methods and fast marching methods, (1999), Cambridge University Press · Zbl 0929.65066
[9] Sussman, M.; Puckett, E.G., A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, J. comput. phys., 162, 301-337, (2000) · Zbl 0977.76071
[10] Yokoi, K., Numerical method for complex moving boundary problems in a Cartesian fixed grid, Phys. rev. E, 65, 055701(R), (2002)
[11] Enright, D.; Fedkiw, R.; Ferziger, J.; Mitchell, I., A hybrid particle level set method for improved interface capturing, J. comput. phys., 183, 83-116, (2002) · Zbl 1021.76044
[12] Osher, S.; Fedkiw, R., Level set methods and dynamics implicit surface, Applied mathematical sciences, vol. 153, (2003), Springer
[13] Noh, W.F.; Woodward, P., SLIC (simple line interface method), Lecture notes in physics, 24, 330, (1976) · Zbl 0382.76084
[14] Hirt, C.W.; Nichols, B.D., Volume of fluid (VOF) methods for the dynamic of free boundaries, J. comput. phys., 39, 201, (1981) · Zbl 0462.76020
[15] Youngs, D.L., Time-dependent multi-material flow with large fluid distortion, (), 273-285 · Zbl 0537.76071
[16] Lafaurie, B.; Nardone, C.; Scardovelli, R.; Zaleski, S.; Zanetti, G., Modeling merging and fragmentation in multiphase flows with SURFER, J. comput. phys., 113, 134-147, (1994) · Zbl 0809.76064
[17] Rudman, M., Volume-tracking method for interfacial flow calculations’, Int. J. numer. meth. fluids, 24, 679-691, (1997) · Zbl 0889.76069
[18] Rider, W.J.; Kothe, D.B., Reconstructing volume tracking, J. comput. phys., 141, 112, (1998) · Zbl 0933.76069
[19] Scardovelli, R.; Zaleski, S., Direct numerical simulation of free-surface and interfacial flow, Annu. rev. fluid mech., 31, 567-603, (1999)
[20] Li, J.; Renardy, Y.; Renardy, M., Numerical simulation of breakup of a viscous drop in simple shear flow with a volume-of-fluid method, Phys. fluids, 12, 269-282, (2000) · Zbl 1149.76454
[21] Harvie, D.J.E.; Fletcher, D.F., A new volume of fluid advection algorithm: the stream scheme, J. comput. phys., 162, 1-32, (2000) · Zbl 0964.76068
[22] Harvie, D.J.E.; Fletcher, D.F., A new volume of fluid advection algorithm: the defined donating region scheme, Int. J. numer. meth. fluids, 35, 151-172, (2001) · Zbl 0991.76062
[23] Renardy, Y.; Cristini, V., Effect of inertia on drop breakup under shear, Phys. fluids, 13, 7, (2001) · Zbl 1184.76451
[24] Renardy, Y.; Renardy, M.; Cristini, V., A new volume-of-fluid formulation for surfactants and simulations of drop deformation under shear at a low viscosity ratio, Eur. J. mech. B/fluids, 21, 49, (2002) · Zbl 1063.76077
[25] Renardy, Y.; Cristini, V.; Li, J., Drop fragment distribution under shear with inertia, Int. J. multiphase flow, 28, 1125-1147, (2002) · Zbl 1137.76723
[26] Khismatullin, D.; Renardy, Y.; Cristini, V., Inertia-induced breakup of highly viscous drops subjected to simple shear, Phys. fluids, 15, 1351, (2003) · Zbl 1186.76278
[27] Aulisa, E.; Manservisi, S.; Scardovelli, R., A mixed markers and volume-of-fluid method for the reconstruction and advection of interfaces in two-phase and free-boundary flows, J. comput. phys., 188, 611-639, (2003) · Zbl 1127.76346
[28] Lopez, J.; Hernandez, J.; Gomez, P.; Faura, F., A volume of fluid method based on multidimensional advection and spline interface reconstruction, J. comput. phys., 195, 718-742, (2004) · Zbl 1115.76358
[29] Aulisa, E.; Manservisi, S.; Scardovelli, R.; Zaleski, S., A geometrical area-preserving volume-of-fluid advection method, J. comput. phys., 192, 355-364, (2004) · Zbl 1032.76632
[30] Aulisa, E.; Manservisi, S.; Scardovelli, R., A surface marker algorithm coupled to an area-preserving marker redistribution method for three-dimensional interface tracking, J. comput. phys., 197, 555-584, (2004) · Zbl 1079.76605
[31] Pilliod, J.E.; Puckett, E.G., Second-order accurate volume-of-fluid algorithms for tracking material interfaces, J. comput. phys., 199, 465-502, (2004) · Zbl 1126.76347
[32] Cristini, V.; Tan, Y.C., Theory and numerical simulation of droplet dynamics in complex flows, Lab chip, 4, 257, (2004)
[33] Lopez, J.; Hernandez, J.; Gomez, P.; Faura, F., An improved PLIC-VOF method for tracking thin fluid structures in incompressible two-phase flows, J. comput. phys., 208, 51-74, (2005) · Zbl 1115.76359
[34] Yang, X.; James, A.J.; Lowengrub, J.; Zheng, X.; Cristini, V., An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids, J. comput. phys., 217, 2, 364-394, (2006) · Zbl 1160.76377
[35] Cristini, V.; Renardy, Y., Scalings for droplet sizes in shear-driven breakup: non-microfluidic ways to monodisperse emulsions, Fluid dyn. mater. process., 2, 2, (2006) · Zbl 1232.76013
[36] E. Aulisa, S. Manservisi, R. Scardovelli, S. Zaleski, Interface reconstruction with least-squares fit and split advection in three-dimensional Cartesian geometry, J. Comput. Phys., in press. doi:10.1016/j.jcp.2007.03.015. · Zbl 1118.76048
[37] Fedkiw, R.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. comput. phys., 152, 457-492, (1999) · Zbl 0957.76052
[38] Yokoi, K., Numerical method for moving solid object in flows, Phys. rev. E, 67, 045701(R), (2003)
[39] Marella, S.; Krishnan, S.; Liu, H.; Udaykumar, H.S., Sharp interface Cartesian grid method I: an easily implemented technique for 3D moving boundary computations, J. comput. phys., 210, 1, (2005) · Zbl 1154.76359
[40] Sussman, M.; Smith, K.M.; Hussaini, M.Y.; Ohta, M.; Zhi-Wei, R., A sharp interface method for incompressible two-phase flows, J. comput. phys., 221, 469-505, (2007) · Zbl 1194.76219
[41] Zalesak, S.T., Fully multi-dimensional flux corrected transport algorithm for fluid flow, J. comput. phys., 31, 335, (1979) · Zbl 0416.76002
[42] Bell, J.B.; Colella, P.; Glaz, H.M., A second-order projection method of the incompressible navier – stokes equations, J. comput. phys., 85, 257, (1989) · Zbl 0681.76030
[43] LeVeque, R., High-resolution conservative algorithms for advection in incompressible flow, SIAM J. numer. anal., 33, 627-665, (1996) · Zbl 0852.76057
[44] Tanaka, R.; Nakamura, T.; Yabe, T., Constructing exactly conservative scheme in a non-conservative form, Comput. phys. commun., 126, 232, (2000) · Zbl 0959.65097
[45] Yabe, T.; Xiao, F.; Utsumi, T., Constrained interpolation profile method for multiphase analysis, J. comput. phys., 169, 556, (2001) · Zbl 1047.76104
[46] Xiao, F.; Yabe, T.; Peng, X.; Kobayashi, H., Conservative and oscillation-less atmospheric transport schemes based on rational functions, J. geophys. res., 107, 4609, (2002)
[47] Xiao, F.; Ikebata, A.; Hasegawa, T., Numerical simulations of free-interface fluids by a multi integrated moment method, Comp. struct., 83, 409-423, (2005)
[48] Xiao, F.; Akoh, R.; Ii, S., Unified formulation for compressible and incompressible flows by using multi integrated moments II: multi-dimensional version for compressible and incompressible flows, J. comput. phys., 213, 31-56, (2006) · Zbl 1137.76445
[49] Daly, B.J., Numerical study of the effect of surface tension on interface instability, Phys. fluids, 12, 1340, (1969) · Zbl 0177.56103
[50] Brackbill, J.U.; Kothe, D.B.; Zemach, C., A continuum method for modeling surface tension, J. comput. phys., 100, 335, (1992) · Zbl 0775.76110
[51] Gerlach, D.; Tomar, G.; Biswas, G.; Durst, F., Comparison of volume-of-fluid methods for surface tension-dominant two-phase flows, Int. J. heat mass transfer, 49, 740, (2006) · Zbl 1189.76363
[52] Bellman, R.; Pennington, R.H., Effect of surface tension and viscosity on Taylor instability, Quart. appl. meth., 12, 12, 151, (1954) · Zbl 0057.41503
[53] Drazin, P.G.; Reid, W.H., Hydrodynamic stability, (1967), Cambridge University Press Cambridge, UK · Zbl 0513.76031
[54] K. Yokoi, A numerical method for free-surface flows and its application to droplet impact on a thin liquid layer, J. Sci. Comp., submitted for publication. · Zbl 1203.76123
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.