×

zbMATH — the first resource for mathematics

Continuous linear division and extension of \(C^\infty\) functions. (English) Zbl 0521.32008

MSC:
32C05 Real-analytic manifolds, real-analytic spaces
32B20 Semi-analytic sets, subanalytic sets, and generalizations
58A07 Real-analytic and Nash manifolds
46A04 Locally convex Fréchet spaces and (DF)-spaces
46E10 Topological linear spaces of continuous, differentiable or analytic functions
46M20 Methods of algebraic topology in functional analysis (cohomology, sheaf and bundle theory, etc.)
32D15 Continuation of analytic objects in several complex variables
32A38 Algebras of holomorphic functions of several complex variables
46J15 Banach algebras of differentiable or analytic functions, \(H^p\)-spaces
58C20 Differentiation theory (Gateaux, Fréchet, etc.) on manifolds
58D15 Manifolds of mappings
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] E. Bierstone, Extension of Whitney fields from subanalytic sets , Invent. Math. 46 (1978), no. 3, 277-300. · Zbl 0404.58010 · doi:10.1007/BF01390279 · eudml:142565
[2] E. Bierstone and T. Bloom, On the composition of \(\mathcal{C}^{\infty}\) functions with an analytic mapping , Unpublished.
[3] E. Bierstone and P. Milman, Extension and lifting of \({\mathcal C}^{\infty }\) Whitney fields , Enseignement Math. (2) 23 (1977), no. 1-2, 129-137. · Zbl 0356.58004
[4] E. Bierstone and P. D. Milman, Composite differentiable functions , Ann. of Math. (2) 116 (1982), no. 3, 541-558. JSTOR: · Zbl 0519.58003 · doi:10.2307/2007022 · links.jstor.org
[5] E. Bierstone and G. W. Schwarz, Division et prolongement de fonctions \({\mathcal C}^{\infty }\) , C. R. Acad. Sci. Paris Sér. A-B 291 (1980), no. 2, A75-A77. · Zbl 0514.58005
[6] E. Bierstone and G. W. Schwarz, The extension problem and related themes in differential analysis , Proc. Sympos. Pure Math. 40 (1982), · Zbl 0526.32006
[7] J. Brüning and E. Heintze, Representations of compact Lie groups and elliptic operators , Invent. Math. 50 (1978/79), no. 2, 169-203. · Zbl 0392.58015 · doi:10.1007/BF01390288 · eudml:142612
[8] P. B. Djakov and B. S. Mitiagin, The structure of polynomial ideals in the algebra of entire functions , Studia Math. 68 (1980), no. 1, 87-104. · Zbl 0434.46034 · eudml:218328
[9] A. M. Gabrielov, The formal relations between analytic functions , Functional Anal. Appl. 5 (1971), 318-319, Funkcional Anal. i. Priložen 5 (1971) 64-65. · Zbl 0254.32009 · doi:10.1007/BF01086744
[10] G. Glaeser, Fonctions composées différentiables , Ann. of Math. (2) 77 (1963), 193-209. · Zbl 0106.31302 · doi:10.2307/1970204
[11] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II , Ann. of Math. (2) 79 (1964), 109-203; ibid. (2) 79 (1964), 205-326. JSTOR: · Zbl 0122.38603 · doi:10.2307/1970486 · links.jstor.org
[12] H. Hironaka, Subanalytic sets , Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 453-493. · Zbl 0297.32008
[13] H. Hironaka, Introduction to real-analytic sets and real-analytic maps , Istituto Matematico “L. Tonelli” dell’Università di Pisa, Pisa, 1973. · Zbl 0297.32008
[14] S. Łojasiewicz, Ensembles semi-analytiques , Bures-sur-Yvette: I.H.E.S., 1964.
[15] D. Luna, Fonctions différentiables invariantes sous l’opération d’un groupe réductif , Ann. Inst. Fourier (Grenoble) 26 (1976), no. 1, ix, 33-49. · Zbl 0315.20039 · doi:10.5802/aif.599 · numdam:AIF_1976__26_1_33_0 · eudml:74270
[16] B. Malgrange, Ideals of Differentiable Functions , Oxford University Press, Bombay, 1966. · Zbl 0177.17902
[17] J. N. Mather, Differentiable invariants , Topology 16 (1977), no. 2, 145-155. · Zbl 0376.58002 · doi:10.1016/0040-9383(77)90012-X
[18] J. Merrien, Faisceaux analytiques semi-cohérents , Ann. Inst. Fourier (Grenoble) 30 (1980), no. 4, 165-219. · Zbl 0425.32011 · doi:10.5802/aif.813 · numdam:AIF_1980__30_4_165_0 · eudml:74470
[19] J. Merrien, Applications des faisceaux analytiques semi-cohérents aux fonctions différentiables , Ann. Inst. Fourier (Grenoble) 31 (1981), no. 1, x, 63-82. · Zbl 0462.58005 · doi:10.5802/aif.817 · numdam:AIF_1981__31_1_63_0 · eudml:74489
[20] B. Mitiagin, Approximate dimension and bases in nuclear spaces , Russian Math. Surveys 16 (1961), no. 4, 59-128, Uspehi Mat. Nauk 16:4 (1961), 63-132.
[21] G. W. Schwarz, Smooth functions invariant under the action of a compact Lie group , Topology 14 (1975), 63-68. · Zbl 0297.57015 · doi:10.1016/0040-9383(75)90036-1
[22] R. T. Seeley, Extension of \(C^{\infty }\) functions defined in a half space , Proc. Amer. Math. Soc. 15 (1964), 625-626. JSTOR: · Zbl 0127.28403 · doi:10.2307/2034761 · links.jstor.org
[23] E. M. Stein, Singular integrals and differentiability properties of functions , Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501
[24] M. Tidten, Fortsetzungen von \(C^{\infty }\)-Funktionen, welche auf einer abgeschlossenen Menge in \({\mathbf R}^{n}\) definiert sind , Manuscripta Math. 27 (1979), no. 3, 291-312. · Zbl 0412.46027 · doi:10.1007/BF01309013 · eudml:154616
[25] A. Tognoli, A desingularisation theorem for real analytic varieties , Séminaire Pierre Lelong (Analyse), Année 1974/75, Springer, Berlin, 1976, 156-162. Lecture Notes in Math., Vol. 524. · Zbl 0338.32009
[26] J.-Cl. Tougeron, An extension of Whitney’s spectral theorem , Inst. Hautes Études Sci. Publ. Math. (1971), no. 40, 139-148. · Zbl 0239.46023 · doi:10.1007/BF02684697 · numdam:PMIHES_1971__40__139_0 · eudml:103912
[27] J. Cl. Tougeron, Idéaux de fonctions différentiables , Springer-Verlag, Berlin, 1972. · Zbl 0241.46027
[28] D. Vogt, Subspaces and quotient spaces of \((s)\) , Functional analysis: surveys and recent results (Proc. Conf., Paderborn, 1976), North-Holland, Amsterdam, 1977, 167-187. North-Holland Math. Studies, Vol. 27; Notas de Mat., No. 63. · Zbl 0373.46016 · doi:10.1016/S0304-0208(08)70531-0
[29] D. Vogt, Über die Existenz von Ausdehnungsoperatoren für holomorphe Funktionen auf analytischen Mengen in \(\mathbf{C}^{N}\) , · JFM 34.0198.01
[30] F. W. Warner, Foundations of differentiable manifolds and Lie groups , Scott, Foresman and Co., Glenview, Ill.-London, 1971. · Zbl 0241.58001
[31] H. Whitney, Complex analytic varieties , Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1972. · Zbl 0265.32008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.