×

zbMATH — the first resource for mathematics

Realcompactifications through zero-set spaces. (English) Zbl 0521.54012

MSC:
54D60 Realcompactness and realcompactification
54C50 Topology of special sets defined by functions
54B30 Categorical methods in general topology
18A40 Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.)
18B30 Categories of topological spaces and continuous mappings (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alexandroff A. D., Rec. Math. [Mat. Shornik] N.S. 8 (50) pp 307– (1940)
[2] Alexandroff A. D., Rec. Math. [Mat. Sbornik] N.S. 9 (51) pp 563– (1941)
[3] Alexandroff A. D., Rec. Math. [Mat. Sbornik] N.S. 13 (55) pp 169– (1943)
[4] Alò R. A., J. Austral. Math. Soc. 9 pp 489– (1969) · Zbl 0174.25701 · doi:10.1017/S1446788700007448
[5] Alò R. A., Normal. Topological Spaces (1974) · Zbl 0282.54005
[6] Bachman G., Pacific J. Math. 35 pp 291– (1976) · doi:10.2140/pjm.1976.67.291
[7] Bentley H. L., Proc. Amer. Soc. 44 pp 196– (1974)
[8] Blair R. L., Fund. Math. 90 pp 285– (1976)
[9] Blair R. L., Math. Z. 136 pp 41– (1974) · Zbl 0264.54011 · doi:10.1007/BF01189255
[10] Blair R. L., z-embedding in \(\beta\)X x \(\beta\)Y. Set theoretic topology (1977) · Zbl 0391.54006
[11] Blasco J. L., Proc. Amer. Math. Soc. 75 pp 114– (1979) · doi:10.1090/S0002-9939-1979-0529226-2
[12] Blasco J. L., Acta Math. Acad. Sci. Hungar. 36 pp 115– (1980) · Zbl 0464.54024 · doi:10.1007/BF01897098
[13] Brooks R. M., Fund. Math. 60 pp 157– (1967)
[14] Frink O., Amer. J. Math. 86 pp 602– (1964) · Zbl 0129.38101 · doi:10.2307/2373025
[15] Frolík Z., Proc. Amer. Math. Soc. 46 pp 111– (1974) · Zbl 0301.54033 · doi:10.2307/2040492
[16] Frolík Z., Seminar Uniform Spaces, 1973–1974. Directed by Z. Frolík, Matematický ústav ČSAV (1975)
[17] Frolík Z., Soviet Math. Dokl. 17 pp 1444– (1976)
[18] Frolík, Z. 1976.Recent development of theory of uniform spaces. General Topology and its Relations to Modern Analysis and Algebra IV. Proc. Fourth Prague Topological Symposium98–108. Berlin: Springer. (Lecture Notes in Mathematics,) (1977)
[19] Gillman L., Rings of continuous functions (1960) · Zbl 0093.30001 · doi:10.1007/978-1-4615-7819-2
[20] Gilmour C. R.A., Bull. Austral. Math. Soc. 13 pp 57– (1975) · Zbl 0305.54036 · doi:10.1017/S0004972700024242
[21] Gilmour C. R.A., Notices S.Afr. Math. Soc. 11 (1979)
[22] Glicksberg I., Trans. Amer. Math. Soc. 90 pp 369– (1959)
[23] Gordon H., Pacific J. Math. 36 pp 133– (1971) · Zbl 0185.38803 · doi:10.2140/pjm.1971.36.133
[24] Hager A. W., Proc. London Math. Soc. (3) 19 pp 233– (1969) · Zbl 0169.54005 · doi:10.1112/plms/s3-19.2.233
[25] Hager A. W., Proc. London Math. Soc. (3) 28 pp 517– (1974) · Zbl 0284.54017 · doi:10.1112/plms/s3-28.3.517
[26] Hager A. W., Rocky Mt. J. Math. 9 pp 477– (1979) · Zbl 0417.54005 · doi:10.1216/RMJ-1979-9-3-447
[27] Hager A. W., Conf. Sem. Mat. Univ. Bari. 175 pp 1– (1980)
[28] Heldermann N. C., Quaest. Math. 5 pp 119– (1982) · Zbl 0503.18005 · doi:10.1080/16073606.1982.9632259
[29] Isbell J. R., Ann. of Math. 68 pp 96– (1958) · Zbl 0081.11101 · doi:10.2307/1970045
[30] Ohta H., Proc. Amer. Math. Soc. 69 pp 339– (1978) · doi:10.1090/S0002-9939-1978-0482673-9
[31] Rice M. D., Bull. Amer. Math. Soc. 80 pp 159– (1974) · Zbl 0294.54026 · doi:10.1090/S0002-9904-1974-13401-4
[32] Rice M. D., Proc. London Math. Soc. 11 pp 53– (1975) · Zbl 0324.54018 · doi:10.1112/jlms/s2-11.1.53
[33] Rice M. D., Comment. Math. Univ. Carolinae 17 pp 307– (1976)
[34] Salbany S., Math. Colloq. Univ. Cape Town 9 pp 17– (1974)
[35] Steiner A. K., Trans. Amer. Hath. Soc. 148 pp 589– (1970) · doi:10.1090/S0002-9947-1970-0263032-8
[36] Ul’janov V. M., Soviet Math. Dokl. 18 (2) pp 567– (1977)
[37] Vilímovský J., Comment. Math. Univ. Carolinae 14 pp 305– (1973)
[38] Wasileski J. S., Canad. J. Math. 29 pp 37– (1977) · Zbl 0341.54032 · doi:10.4153/CJM-1977-003-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.