zbMATH — the first resource for mathematics

Systems of fixed point sets. (English) Zbl 0521.57027

57S10 Compact groups of homeomorphisms
55M35 Finite groups of transformations in algebraic topology (including Smith theory)
55P91 Equivariant homotopy theory in algebraic topology
57S15 Compact Lie groups of differentiable transformations
55P20 Eilenberg-Mac Lane spaces
Full Text: DOI
[1] Glen E. Bredon, Equivariant cohomology theories, Lecture Notes in Mathematics, No. 34, Springer-Verlag, Berlin-New York, 1967. · Zbl 0162.27202
[2] Tammo tom Dieck, Transformation groups and representation theory, Lecture Notes in Mathematics, vol. 766, Springer, Berlin, 1979. · Zbl 0445.57023
[3] Sören Illman, Equivariant singular homology and cohomology. I, Mem. Amer. Math. Soc. 1 (1975), no. issue 2, 156, ii+74. · Zbl 0297.55003
[4] J. McClure, Some remarks on Elmendorf’s construction (preprint).
[5] J. Peter May, Classifying spaces and fibrations, Mem. Amer. Math. Soc. 1 (1975), no. 1, 155, xiii+98. · Zbl 0321.55033
[6] Georgia Višnjić Triantafillou, Äquivariante rationale Homotopietheorie, Bonner Mathematische Schriften [Bonn Mathematical Publications], 110, Universität Bonn, Mathematisches Institut, Bonn, 1978 (German). Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1977. · Zbl 0429.55001
[7] Stefan Waner, Equivariant homotopy theory and Milnor’s theorem, Trans. Amer. Math. Soc. 258 (1980), no. 2, 351 – 368. , https://doi.org/10.1090/S0002-9947-1980-0558178-7 Stefan Waner, Equivariant fibrations and transfer, Trans. Amer. Math. Soc. 258 (1980), no. 2, 369 – 384. , https://doi.org/10.1090/S0002-9947-1980-0558179-9 Stefan Waner, Equivariant classifying spaces and fibrations, Trans. Amer. Math. Soc. 258 (1980), no. 2, 385 – 405. · Zbl 0444.55010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.