×

A monotonicity formula for Yang-Mills fields. (English) Zbl 0521.58024


MSC:

58E20 Harmonic maps, etc.
53D50 Geometric quantization
53C80 Applications of global differential geometry to the sciences
81T08 Constructive quantum field theory
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] ALLARD, W.K.: On the first variation of a varifold, Ann. of Math.95, 417-491 (1972) · Zbl 0252.49028 · doi:10.2307/1970868
[2] BOURGUIGNON, J.P., LAWSON, Jr., H.B.: Stability and isolation phenomena for Yang-Mills fields, Commun. Math. Phys.79, 189-230 (1981) · Zbl 0475.53060 · doi:10.1007/BF01942061
[3] DE GIORGI, E.: Frontiere orientate di misura minima, Sem. Mat. Scuola Norm. Sup. Pisa (1961) · Zbl 0296.49031
[4] FEDERER, H.: Geometric measure theory, Springer-Verlag, Berlin (1969) · Zbl 0176.00801
[5] GARBER, W-D, RUIJSENAARS, S.N.M., SEILER, E., BURNS, D.: On finite action solutions of the nonlinear ?-model, Ann. Phys.119, 305-325 (1979) · Zbl 0412.35089 · doi:10.1016/0003-4916(79)90189-1
[6] HILDEBRANDT, S.: Nonlinear elliptic systems and harmonic mappings, Proceedings of the Beijing Symposium on Differential Geometry and Differential Equations, Beijing, 1980, to appear · Zbl 0515.58012
[7] LAWSON, Jr., H.B.: Minimal varieties in real and complex geometry, S.M.S.57, Universite dé Montréal (1974)
[8] MORREY, Jr., C.B.: The problem of Plateau on a Riemannian manifold, Ann. of Math.49, 807-851 (1948) · Zbl 0033.39601 · doi:10.2307/1969401
[9] PRICE, P.F., SIMON, L.: Monotonicity formulae for harmonic maps and Yang-Mills fields. Preliminary report. Unpublished
[10] SAMPSON, J.H.: On harmonic mappings, Istit. Naz. Alta Mat., Symp. Mat.26, 197-210 (1982)
[11] SCHOEN, R., UHLENBECK, K.: A regularity theory for harmonic maps, J. Diff. Geom.17, 307-335 (1982) · Zbl 0521.58021
[12] SIMONS, J.: Minimal varieties in Riemannian manifolds, Ann. of Math.88, 62-105 (1968) · Zbl 0181.49702 · doi:10.2307/1970556
[13] SIMONS, J.: Gauge fields, a lecture given during the ?Japan ? United States Seminar on Minimal Submanifolds, including Geodesics:, Tokyo, (1977). (See also [2])
[14] SIU, Y.T., YAU, S.T.: Compact Kähler manifolds of positive bisectional curvature, Invent. Math.59, 189-204 (1980) · Zbl 0442.53056 · doi:10.1007/BF01390043
[15] UHLENBECK, K.K.: Removeable singularities in Yang-Mills fields, Commun. Math. Phys.83, 11-29 (1982) · Zbl 0491.58032 · doi:10.1007/BF01947068
[16] UHLENBECK, K.K.: Connections with Lp bounds on curvature, Commun. Math. Phys.83, 31-42 (1982) · Zbl 0499.58019 · doi:10.1007/BF01947069
[17] XIN, Y.L.: Some results on stable harmonic maps, Duke Math. J.47, 609-613 (1980) · Zbl 0513.58019 · doi:10.1215/S0012-7094-80-04736-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.