Krause, Ulrich A characterization of algebraic number fields with cyclic class group of prime power order. (English) Zbl 0522.12006 Math. Z. 186, 143-148 (1984). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 14 Documents MSC: 11R27 Units and factorization 11R23 Iwasawa theory Keywords:cyclic class group of prime power order; class number; primary integer; factorization of algebraic integers Citations:Zbl 0202.33101 × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] Carlitz, L.: A characterization of algebraic number fields with class number two. Proc. Amer. Math. Soc.11, 391-392 (1960) · Zbl 0202.33101 [2] Czogala, A.: Arithmetic characterization of algebraic number fields with small class numbers. Math. Z.176, 247-253 (1981) · doi:10.1007/BF01261871 [3] Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers. Warszawa: Polish Scientific Publishers 1974 · Zbl 0276.12002 [4] Narkiewicz, W.: Finite abelian groups and factorization problems. Colloq. Math.42, 319-330 (1979) · Zbl 0514.12004 [5] Narkiewicz, W., ?liwa, J.: Finite abelian groups and factorization problems II. Colloq. Math.46, 115-122 (1982) · Zbl 1164.20358 [6] Olson, J.E.: A combinatorial problem on finite abelian groups I. J. Number Theory1, 8-10 (1969) · Zbl 0169.02003 · doi:10.1016/0022-314X(69)90021-3 [7] Zaks, A.: Half-factorial domains. Israel J. Math.37, 281-302 (1980) · Zbl 0509.13017 · doi:10.1007/BF02788927 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.