×

L’anneau de Milnor d’un corps local à corps résiduel parfait. (French) Zbl 0522.12015


MSC:

11S70 \(K\)-theory of local fields
18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects)
12G05 Galois cohomology
14F22 Brauer groups of schemes
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] Algebraic K-theory, II, Lect Notes in Math., 342 (1973). · Zbl 0265.00008
[2] H. BASS, J. TATE, The Milnor ring of a global field, in Algebraic K-theory, II, Lect. Notes in Math., 342 (1973), 349-428. · Zbl 0299.12013
[3] J. E. CARROLL, On the torsion in K2 of local fields, in Algebraic K-theory, II, Lect. Notes in Math., 342 (1973), 464-473. · Zbl 0269.18011
[4] K. DENNIS, M. STEIN, K2 of discrete valuation rings, Adv. in Math., 18, n° 2 (1975), 182-238. · Zbl 0318.13017
[5] B. KAHN, Thèse de 3e cycle, Université de Bordeaux I, 1983.
[6] K. KATO, A generalization of class field theory by using K-groups, I : Journ. Fac. Sci. Tokyo, 26 (1979), 303-376, II ; ibid. 27 (1980), 603-683. · Zbl 0428.12013
[7] S. LANG, Algebra, Addison-Wesley, 1965. · Zbl 0193.34701
[8] J. MILNOR, Introduction to algebraic K-theory, Ann. of Math. Studies, 72, Princeton, 1971. · Zbl 0237.18005
[9] J. MILNOR, Algebraic K-theory and quadratic forms, Inv. Math., 9 (1969-1970), 318-344. · Zbl 0199.55501
[10] C. MOORE, Group extensions of p-adic and adelic linear groups, Publ. Math. I.H.E.S., 35 (1969). · Zbl 0159.03203
[11] A. PARSIN, Abelian coverings of arithmetic schemes, Soviet. Math. Dokl., vol. 19, n° 6 (1978), 1438-1442. · Zbl 0443.12006
[12] I. R. ŠAFAREVIČ, A general reciprocity law, Amer. Math. Soc. Transl., 4 (1956), 73-105. · Zbl 0071.03303
[13] J.-P. SERRE, Corps locaux, 2e éd., Hermann, Paris, 1968.
[14] J.-P. SERRE, Cohomologie galoisienne, Lect. Notes in Math., 5 (1964). · Zbl 0128.26303
[15] C. SOULÉ, K2 et le groupe de Brauer, Séminaire Bourbaki (1982), n° 601. · Zbl 0535.14005
[16] A. SUSLIN, Torsion in K2 of fields, prépublication, Léningrad, 1982. · Zbl 0635.12015
[17] R. SWITZER, Algebraic topology-homotopy and homology, Springer, 1975. · Zbl 0305.55001
[18] J. TATE, Relations between K2 and Galois cohomology, Inv. Math., 36 (1976), 257-274. · Zbl 0359.12011
[19] A. MERKURJEV and A. SUSLIN, K-cohomology of Severi-Brauer varieties and norm residue homomorphism, Math. USSR, Izvestija, 21 (1983), (trad. anglaise). · Zbl 0525.18008
[20] A. MERKURJEV, On the torsion in K2 of local fields, Ann. of Math., 118 (1983), 375-381. · Zbl 0519.12010
[21] J. GRAHAM, Continuous symbols on fields of formal power series, Algebraic K-theory, II, Lect. Notes in Math., 342 (1973), 474-486. · Zbl 0272.18008
[22] K. KATO, Milnor’s K-theory and the Chow group of zero cycles, prépublication. · Zbl 0603.14009
[23] J. TATE, On the torsion in K2 of fields, in Algebraic Number Theory Conference, Kyoto Intern. Symposium 1976, 243-261, Japan Soc. Prom. Sci., 1977. · Zbl 0368.12008
[24] A. WEIL, L’intégration dans LES groupes topologiques et ses applications, 2e édition, Hermann, Paris, 1965.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.