×

zbMATH — the first resource for mathematics

Flat covers and flat cotorsion modules. (English) Zbl 0522.13008

MSC:
13C11 Injective and flat modules and ideals in commutative rings
13C12 Torsion modules and ideals in commutative rings
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Edgar E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), no. 3, 189 – 209. · Zbl 0464.16019
[2] Edgar Enochs, Torsion free covering modules, Proc. Amer. Math. Soc. 14 (1963), 884 – 889. · Zbl 0116.26003
[3] Bernhard Banaschewski, On coverings of modules, Math. Nachr. 31 (1966), 57 – 71. · Zbl 0142.01004
[4] Edgar E. Enochs, Torsion free covering modules. II, Arch. Math. (Basel) 22 (1971), 37 – 52. · Zbl 0216.07101
[5] Takeshi Ishikawa, On injective modules and flat modules, J. Math. Soc. Japan 17 (1965), 291 – 296. · Zbl 0199.07802
[6] Eben Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511 – 528. · Zbl 0084.26601
[7] Phillip Griffith, A representation theorem for complete local rings, J. Pure Appl. Algebra 7 (1976), no. 3, 303 – 315. · Zbl 0338.13023
[8] László Fuchs, Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970. · Zbl 0209.05503
[9] Eben Matlis, Cotorsion modules, Mem. Amer. Math. Soc. No. 49 (1964), 66. · Zbl 0135.07801
[10] L. Fuchs, Cotorsion modules over Noetherian hereditary rings, Houston J. Math. 3 (1977), no. 1, 33 – 46. · Zbl 0347.16014
[11] Michel Raynaud and Laurent Gruson, Critères de platitude et de projectivité. Techniques de ”platification” d’un module, Invent. Math. 13 (1971), 1 – 89 (French). · Zbl 0227.14010
[12] R. B. Warfield Jr., Purity and algebraic compactness for modules, Pacific J. Math. 28 (1969), 699 – 719. · Zbl 0172.04801
[13] D. K. Harrison, Infinite abelian groups and homological methods, Ann. of Math. (2) 69 (1959), 366 – 391. · Zbl 0100.02901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.