×

Order completion monads. (English) Zbl 0522.18005


MSC:

18C15 Monads (= standard construction, triple or triad), algebras for monads, homology and derived functors for monads
18D15 Closed categories (closed monoidal and Cartesian closed categories, etc.)
06A06 Partial orders, general
18A32 Factorization systems, substructures, quotient structures, congruences, amalgams
18A30 Limits and colimits (products, sums, directed limits, pushouts, fiber products, equalizers, kernels, ends and coends, etc.)
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
08C05 Categories of algebras

Citations:

Zbl 0372.06002
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] H.Andr?ka and I.N?meti,Applications of Universal Algebra, Model Theory, and Categories in Computer Science (Survey and Bibliography), Math. Inst. Hung. Acad. Sci., February 1979.
[2] H.Applegate,Acyclic models and resolvent functors, thesis, Columbia University, 1965.
[3] M.Arbib, and E.Manes,Partially-additive categories and computer program semantics, COINS Rep. 78-12, Univ. of Mass, at Amherst, 1978.
[4] B.Banaschewski and E.Nelson,Completions of partially ordered sets as reflections, Comp. Sci., Tech. Rep. #79-CS-6, McMaster University, January 1979. · Zbl 0493.06002
[5] G.Birkhoff,Lattice Theory, AMS Coll. Publ., Vol. 25, 3rd ed., 1967.
[6] B.Courcelle and M.Nivat,Algebraic families of interpretations, 17th. IEEE Symp. FOC, (1976), 137-146.
[7] B.Courcelle and M.Nivat,The algebraic semantics of recursive program schemas, Proc. Symp. MFCS ’78, Springer LNCS, 1978. · Zbl 0384.68016
[8] B.Courcelle and J. C.Raoult,Completion of ordered magmas, manuscript, 1977, to appear in Fundamenta Informaticae. · Zbl 0463.06005
[9] B. J.Day and G. M.Kelly,Enriched functor categories, in Reports of the Midwest Category Seminar III, 178-191, Springer LNM #106, 1969. · Zbl 0214.03202
[10] E.Dubuc,Kan extensions in enriched category theory, Springer LNM #145, 1970. · Zbl 0228.18002
[11] E. Dubuc,Free monoids, J. Algebra,29 (1974), 108-228. · Zbl 0291.18010
[12] H. Egli andR. Constable,Computability concepts for programming language semantics, Theor. Comp. Sci.,2 (1976), 133-145. · Zbl 0352.68042
[13] S.Eilenberg and G. M.Kelly,Closed categories, in Proc. La Jolla Conf. Categorical Algebra, (1966), 421-562. · Zbl 0192.10604
[14] S. Eilenberg andJ. C. More,Adjoint functors and triples, Illinois J. Math,9 (1965), 381-396. · Zbl 0135.02103
[15] J. A.Goguen and J. W.Thatcher,Initial algebra semantics, Proc. 15th IEEE SWAT, (1974), 52-62.
[16] J. A. Goguen, J. W. Thatcher, E. Wagner andJ. B. Wright,Initial algebra semantics and continuous algebras, J. ACM,24 (1977), 68-95. · Zbl 0359.68018
[17] I.Guessarian,On continuous completions, Universit? Paris VII, LITP Report #79-25, May 1979. · Zbl 0405.68016
[18] H.Herrlich and G. E.Strecker,Category Theory, Allyn and Bacon, 1973.
[19] K.Indermark,Schemes with recursion on higher types, Proc. MFCS ’76, Springer LNCS #45, (1976), 352-358. · Zbl 0337.68015
[20] P. T. Johnstone,Adjoint lifting theorems for categories of algebras, Bull. London Math. Soc,7 (1975), 294-297. · Zbl 0315.18004
[21] A.Kock,Limit monads in categories, Aarhus University Math. Preprint Series 1967/68, #6.
[22] A. Kock,Closed categories generated by commutative monads, J. Australian Math. Soc,12 (1971), 405-424. · Zbl 0244.18007
[23] A.Kock,Monads for which structures are adjoint to units, Aarhus University Math. Preprint Series 1972/73, #35. · Zbl 0849.18008
[24] F. W. Lawvere, ?Functorial semantics of algebraic theories?, Proc. Nat. Acad. Sci. USA,50 (1963), 869-872. · Zbl 0119.25901
[25] F. W.Lawvere, ?Ordinal sums and equational doctrines?, in Seminar on Triples and Categorical Homology Theory, Springer LNM #80 (1969), 141-155.
[26] D. J.Lehmann,On the algebra of order, in Proc. IEEE Symp. FOC, 1978. · Zbl 0405.73003
[27] D. J.Lehmann and M. B.Smith,Data types, Univ. of Warwick Theor. of Comput. Rep. #19, 1977.
[28] F. E. J. Linton,Autonomous equational categories, J. Math. Mech.,15 (1966), 637-642. · Zbl 0146.25104
[29] F. E. J.Linton,Coequalizers in categories of algebras, in Seminar on Triples and Categorical Homology Theory, Springer LNM #80 (1969), 75-90.
[30] S.MacLane,Categories for the working mathematician, Springer GTM, 1971. · Zbl 0705.18001
[31] E. G.Manes,Algebraic Theories, Springer GTM, 1976. · Zbl 0353.18007
[32] G. Markowsky,Chain-complete posets and directed sets with applications, Algebra Universalis,6 (1966), 53-68. · Zbl 0332.06001
[33] G. Markowsky,Categories of chain-complete posets, Theor. Comp. Sci.,4 (1977), 125-135. · Zbl 0366.18003
[34] G. Markowsky andB. K. Rosen,Bases for chain-complete posets, IBM J. Res. Develop.,20 (1976), 138-147. · Zbl 0329.06001
[35] J. Meseguer,On order-complete Universal Algebra and enriched functorial semantics, in FCT ’77, Springer LNCS,56 (1977), 294-301. · Zbl 0368.18006
[36] J. Meseguer,Completions, factorizations and colimits for ?-posets, in Colloquia Mathematica Societatis Janos Bolyai, 26, 509-545. Mathematical Logic in Computer Science, Salgotarjan (Hungary), 1978 (also UCLA Comp. Sci. Dept. Theor. Comput. Rep. #13). · Zbl 0486.06003
[37] J. Meseguer,Ideal monads and Z-posets, Notices AMS, 25, #6, A-579-580, October 1978 (also UCLA Comp. Sci. Dept. Theor. Comput. Rep. #15).
[38] J. Meseguer,Varieties of chain-complete algebras, J. Pure Appl. Algebra,19 (1980), 347-383. · Zbl 0445.18008
[39] M.Nivat,On the interpretation of polyadic recursive schemas, in Symposia Mathematica, 15, Academic Press, 1975. · Zbl 0346.68041
[40] G.Plotkin, \(\mathbb{T}^\omega\) as a universal domain, DAI Res. Rep. #28, University of Edinburgh, 1977.
[41] E.Sciore and A.Tang,Admissible coherent c.p.o.’s, in MFCS ’77, Springer LNCS #53, 1977. · Zbl 0384.03009
[42] D. S.Scott,The lattice of flow diagrams, in Springer LNM #188 (1971), 311-366. · Zbl 0228.68016
[43] D. S.Scott,Continuous lattices, in Springer LNM #274 (1971), 97-136.
[44] D. S. Scott,Data types as lattices, SIAM J. Comput.,5 (1976), 522-587. · Zbl 0337.02018
[45] R.Street,Fibrations and Yoneda’s lemma in a 2-category in Springer LNM #420 (1974), 104-133. · Zbl 0327.18006
[46] A. Tang,Way-below continuous congruence relations, manuscript, Comp. Sci. Dept., University of Kansas at Lawrence, 1979.
[47] J. W. Thatcher, E. G. Wagner andJ. B. Wright,A uniform approach to inductive posets and inductive closure, Theor. Comp. Sci,7 (1978), 57-77. · Zbl 0732.06001
[48] J. W.Thatcher, E. G.Wagner and J. B.Wright,Free continuous theories, IBM Res. Rep. RC 6906, 1977. · Zbl 0359.68018
[49] J. W.Thatcher, E. G.Wagner and J. B.Wright,Notes on algebraic fundamentals for Theoretical Computer Science, lectures at the Summer School on Foundations of Artificial Intelligence and Computer Science, Pisa, 1978.
[50] V. Zoberiein,Doctrines on 2-categories, Math. Z.,148 (1976), 267-279. · Zbl 0321.18003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.