×

zbMATH — the first resource for mathematics

The Riemann-Hurwitz formula for the centralizer of a pair of permutations. (English) Zbl 0522.20003

MSC:
20B05 General theory for finite permutation groups
05A15 Exact enumeration problems, generating functions
20F65 Geometric group theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R.Cori, Un code pour les graphes planaires et ses applications. Asterisque27 (1975). · Zbl 0313.05115
[2] R. Cori, A. Machì, J. G. Penaud andB. Vauquelin, On the automorphism group of a planar hypermap. Eur. J. Combinatorics2, 331-334 (1981).
[3] J. Dénes, The representation of a permutation as a product of a minimal number of transpositions and its connection with the theory of graphs. Publ. Math. Inst. Hung. Acad. Sci.4, 63-71 (1959). · Zbl 0092.01104
[4] J. Edmonds, A combinatorial representation for polyhedral surfaces. Amer. Mat. Soc. Notices7, 646 (1960).
[5] S. Eilenberg, Sur les transformations périodiques de la surface de la sphère. Fund. Math.22, 28-41 (1934). · JFM 60.1228.02
[6] A.Hurwitz, Über Riemannsche Flächen mit gegebenen Verzweigungspunkten, Werke I. Basel 1932.
[7] A.Hurwitz, Über algebraische Gebilde mit eindeutigen Transformationen in sich, Werke I. Basel 1932.
[8] A. Jacques, Sur le genre d’une paire de substitutions. C. R. Acad. Sci. Paris267, 625-627 (1968). · Zbl 0187.20902
[9] R. Ree, A theorem on permutations. J. Comb. Theory10, 174-175 (1971). · Zbl 0221.05033 · doi:10.1016/0097-3165(71)90020-3
[10] J. W. T. Youngs, Minimal Imbeddings and the Genus of a Graph. J. Math. Mech.12, 303-315 (1963). · Zbl 0109.41701
[11] H.Zassenhaus, The Theory of groups (2nd ed), New York 1958. · Zbl 0083.24517
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.