×

On homogeneous polynomials on a complex ball. (English) Zbl 0522.32004


MSC:

32A35 \(H^p\)-spaces, Nevanlinna spaces of functions in several complex variables
32A40 Boundary behavior of holomorphic functions of several complex variables
32A30 Other generalizations of function theory of one complex variable
46B20 Geometry and structure of normed linear spaces
32A07 Special domains in \({\mathbb C}^n\) (Reinhardt, Hartogs, circular, tube) (MSC2010)
42B30 \(H^p\)-spaces

Citations:

Zbl 0503.32001
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Y. Benyamini and Y. Gordon, Random factorization of operators between Banach spaces, J. Analyse Math. 39 (1981), 45 – 74. · Zbl 0474.47010
[2] George S. Carr, Formulas and theorems in pure mathematics, 2nd ed., Chelsea Publishing Co., New York, 1970. With an introduction by Jacques Dutka. · Zbl 0209.00102
[3] Peter L. Duren, Theory of \?^{\?} spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970.
[4] Albrecht Pietsch, Operator ideals, Mathematische Monographien [Mathematical Monographs], vol. 16, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. · Zbl 0405.47026
[5] Walter Rudin, Function theory in the unit ball of \?\(^{n}\), Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 241, Springer-Verlag, New York-Berlin, 1980. · Zbl 0495.32001
[6] D. Rutovitz, Some parameters associated with finite-dimensional Banach spaces, J. London Math. Soc. 40 (1965), 241 – 255. · Zbl 0125.06402
[7] Richard M. Timoney, Bloch functions in several complex variables. I, Bull. London Math. Soc. 12 (1980), no. 4, 241 – 267. · Zbl 0416.32010
[8] A. Zygmund, Trigonometric series, Cambridge Univ. Press., New York, 1979. · JFM 58.0296.09
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.