×

zbMATH — the first resource for mathematics

Large amplitude time periodic solutions of a semilinear wave equation. (English) Zbl 0522.35065

MSC:
35L70 Second-order nonlinear hyperbolic equations
35B10 Periodic solutions to PDEs
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Amann, Houston J. Math. 7 pp 147– (1981)
[2] Bahri, Proc. Roy. Soc. Edinburgh 85A pp 313– (1980) · Zbl 0438.35044 · doi:10.1017/S0308210500011896
[3] and , The dual method in critical point theory and multiplicity results for indefinite functions, preprint.
[4] Brezis, Amer. J. Math. 103 pp 559– (1981)
[5] Brezis, Comm. Pure Appl. Math. 33 pp 667– (1980)
[6] Brezis, Comm. Pure Appl. Math. 31 pp 1– (1978)
[7] , and , A new proof and an extension of a theorem of P. Rabinowitz concerning nonlinear wave equations, preprint. · Zbl 0504.35064
[8] , and , Multiple periodic solutions for an asymptotically linear wave equation, preprint.
[9] Periodic solutions of a nonlinear wave equation without assumption of monotonicity, preprint.
[10] Hofer, J. Nonlin. Anal. 5 pp 1– (1981)
[11] Hofer, Math. Nach.
[12] Hofer, Trans. A. M. S.
[13] Mancini, Boll. U. M. I., (5) 15-B pp 649– (1978)
[14] Solutions periodiques d’equations aux derivées partielles hyperboliques non lineaires, Melanges Vogel, Rybak, (Jaussens et Jessel, ed.) Presses Univ. Bruxelles, Bruxelles, 1978, pp. 301–319.
[15] Rabinowitz, Comm. Pure Appl. Math. 31 pp 31– (1978)
[16] Willem, C. R. Acad. Sc. 290 pp 881– (1980)
[17] A resonance case for an asymptotically nonlinear vibrating string equation, preprint. · Zbl 0465.35006
[18] Rabinowitz, J. Diff.
[19] Benci, Inv. Math. 52 pp 241– (1979)
[20] , and , Borsuk-Ulam theorems for arbitrary S1 actions and applications, Trans. A. M. S.
[21] Benci, Trans. A. M. S.
[22] Lovicarová, Czech. Math. J. 19 pp 324– (1969)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.