×

zbMATH — the first resource for mathematics

Natural spline functions, their associated eigenvalue problem. (English) Zbl 0522.41011

MSC:
41A15 Spline approximation
65D05 Numerical interpolation
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Ahlberg, J., Nilson, E., Walsh, J.: The Theory of Splines and Their Applications. New York: Academic Press, 1967 · Zbl 0158.15901
[2] Atteia, M.: Théorie et Applications de Fonctions Spline en Analyse Numérique. Thesis. Grenoble, 1966
[3] Bellman, R.: Introduction to Matrix Analysis. New York: McGraw Hill, 1960 · Zbl 0124.01001
[4] Craven, P., Wahba, G.: Smoothing Noisy Data with Spline Function. Estimating the Correct Degree of Smoothing by the Method of Generalized Cross-Validation. Numer. Math.31, 377-403 (1979) · Zbl 0377.65007
[5] Duc-Jacquet, M.: Résolution de Quelques Problemes d’Analyse Numérique a l’aide de Perturbations par des Matrices Antyscalaires. Thesis. Grenoble,
[6] Gantmacher, M.: Matrix Theory. Tome II. Chelsea Publ. Co., New York, 1960
[7] Golub, G., Heath, M., Wahba, G.: Generalized Cross-Validation as a Method for choosing a Good Ridge Parameter. Technometrics21, 2, 215-223 (1979) · Zbl 0461.62059
[8] Kac, M., Murdock, W.L., Szego, G.: On the Eigenvalues of Certain Hermitian forms. Canadian J. Math.
[9] Laurent, P.J.: Approximation et Optimisation. Paris: Hermman, 1972 · Zbl 0238.90058
[10] Reinsch, C.: Oscillation Matrices with Spline Smoothing. Numer. Math.24, 375-382 (1975) · Zbl 0297.65002
[11] Schoenberg, I.J.: Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions. Quaterly Appl. Math.4, 1, 2 (1946) · Zbl 0061.28804
[12] Schumaker, L.: Spline Functions: Basic Theory. New York: John Wiley and Sons, 1981 · Zbl 0449.41004
[13] Utreras, F.: Sur le Choix du Parametre d’Ajustement dans le Lissage par Fonctions Spline. Numer. Math.34, 1, 15-28 (1980) · Zbl 0414.65007
[14] Utreras, F.: Cross-Validation Techniques for Smoothing Spline Functions in One or Two Dimensions. In: Smoothing Techniques for Curve Estimation. Gasser, T., Rosemblatt, M. (eds.). Lecture Notes in Mathematics, No. 757, 1979 · Zbl 0447.65005
[15] Wahba, G.: Practical Approximate Solutions to Linear Operator Equations when the Data are Noisy. SIAM J. Numer. Anal.14, 4, 651-667 (1977) · Zbl 0402.65032
[16] Wahba, G.: Smoothing Noisy Data with Spline Functions. Numer. Math.24, 383-393 (1975) · Zbl 0299.65008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.