×

Théorèmes d’existence en optimisation non convexe. (French) Zbl 0522.49002


MSC:

49J20 Existence theories for optimal control problems involving partial differential equations
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
49N15 Duality theory (optimization)
Full Text: DOI

References:

[1] Aubert G., J. Differential Equations 33 pp 1– (1979) · doi:10.1016/0022-0396(79)90075-5
[2] Aubert G., Boll, tin. Mat. Ital 5 pp 17– (1980)
[3] Ekeland E., Analyse convexe et problernes variation-nels (1974)
[4] Ekeland E., Existence theorems for non convex problems · Zbl 1220.15012
[5] Raymond, These cie 3e Cycle (1982)
[6] Marcellini P., A relation between existence of mioima for non convex integrals and uniqueness fornon strictly convex integrals of the calculus of variations (1982)
[7] Gurtin M., J. Elasticity 11 pp 2– (1981) · Zbl 0496.73036 · doi:10.1007/BF00043860
[8] Ball J.M, Arch. Rational Mech. Anal 63 (1977)
[9] Ollech C., Integrals of set valued functions and linear optimal control problems (1970)
[10] Stampacchia C., Presses de 1’Université de Montré 63 (1966)
[11] Tartar J., Cours Universite du Wisconsin (1975)
[12] Tahraoui R., Theoremes d’existence en calcul des variations et application á 1’élasticité non linéaire, á
[13] Ancona A., communication personnelle
[14] Temam, R. 1977. ”Navier-Stokes Equations”. Amsterdam, New-York: North-Holland Publishing Company. · Zbl 0383.35057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.