×

Efficient multistep procedures for nonlinear parabolic problems with nonlinear Neumann boundary conditions. (English) Zbl 0522.65072


MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N40 Method of lines for boundary value problems involving PDEs
35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] O. Axelsson,On preconditioning and convergence acceleration in space matrix problems, CERN European Organization for Nuclear Research, Geneva, 1974.
[2] J. H. Bramble,Multistep methods for quasilinear equations, Computational Methods in Nonlinear Mechanics J. T. Oden, editor, North Holland Publishing Company, New York (1980). · Zbl 0428.73083
[3] J. H. Bramble, R. E. Ewing,Efficient starting procedures for high order time-stepping methods for differential equations (to appear).
[4] J. H. Bramble, R. E. Ewing Alternating direction multistep methods for parabolic problems-iterative stabilization, (to appear). · Zbl 0686.65078
[5] J. H. Bramble, R. E. Ewing,Direct alternating direction multistep methods for parabolic problems, (to appear). · Zbl 0686.65078
[6] J. H. Bramble, P. H. Sammon,Efficient higher order single-step methods for parabolic problems: part I, Math. Res. Center Rep. #1958, Madison, Wisconsin (1979) and Math. Comp. (to appear). · Zbl 0476.65072
[7] J. H. Bramble, P. H. Sammon,Efficient higher order multistep methods for parabolic problems: part I, (to appear). · Zbl 0476.65072
[8] J. Douglas, Jr., T. Dupont.Galerkin methods for parabolic equations with nonlinear boundary conditions, Numer. Math.20 (1973), 213–237. · Zbl 0234.65096
[9] J. Douglas, Jr., T. Dupont, R. E. Ewing,Incomplete iteration for time-stepping a Galerkin method for a quasilinear parabolic problem, SIAM J. Numer. Anal.16 (1979), 503–522. · Zbl 0411.65064
[10] R. E. Ewing,Time-stepping Galerkin methods for nonlinear Sobolev partial differential equations. SIAM J. Numer. Anal.15 (1978), 1125–1150. · Zbl 0399.65083
[11] R. E. Ewing,Efficient time-stepping methods for miscible displacement problems with nonlinear boundary conditions, Math. Res. Center Rep. #1952, Madison, Wisconsin (1979).
[12] R. E. Ewing,On efficient time-stepping methods for monlinear partial differential equations, Comput. Math. Appl.6 (1980) 1–13. · Zbl 0508.65050
[13] R. Ewing, T. F. Fussell,Efficient time-stepping procedures for miscible displacement problems in porous media, SIAM J. Numer. Anal.19 (1982), 1–67. · Zbl 0498.76084
[14] C. W. Gear,Numerical initial value problems in ordinary differential equations, (1971), Prentice-Hall, New Jersey. · Zbl 1145.65316
[15] P. Henrici,Discrete variable methods in ordinary differential equations (1962), John Wiley and Sons, New York. · Zbl 0112.34901
[16] L. Lions, E. Magenes,Non-homogeneous boundary value problems and applications, I, (1972), Springer-Verlag, New York. · Zbl 0223.35039
[17] M. Luskin,A Galerkin method for nonlinear parabolic equations with nonlinear boundary conditions, SIAM J. Numer. Anal.16 (1979) 284–299. · Zbl 0405.65059
[18] M. F. Wheeler A priori L 2-error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal.10 (1973), 723–759. · Zbl 0258.35041
[19] M. Zlámal,Finite element multistep discretizations of parabolic boundary value problems, Math. Comput.29 (1975) 350–359. · Zbl 0302.65081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.