Hardt, Robert; Kinderlehrer, David Elastic plastic deformation. (English) Zbl 0522.73029 Appl. Math. Optimization 10, 203-246 (1983). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 21 Documents MSC: 74C99 Plastic materials, materials of stress-rate and internal-variable type 74S30 Other numerical methods in solid mechanics (MSC2010) 74P99 Optimization problems in solid mechanics Keywords:elastic plastic deformation; solid continuum; potential energy functional; first variations gives equilibrium equations; stress expressed in terms of strain; duality of first problem and regularity properties of solution; existence of elastic and plastic states; transition to fracture PDF BibTeX XML Cite \textit{R. Hardt} and \textit{D. Kinderlehrer}, Appl. Math. Optim. 10, 203--246 (1983; Zbl 0522.73029) Full Text: DOI OpenURL References: [1] Agmon S, Douglis A, Nirenberg L (1964) Estimates near the boundary for solutions of elliptic differential equations satisfying general boundary conditions, II. Comm Pure Appl Math 22:35-92 · Zbl 0123.28706 [2] Anzellotti G (to appear) On the extremal stress and displacement in Hencky plasticity [3] Anzellotti G, Giaquinta M (1980) Existence of the displacement field for an elasto-plastic body. Manus Math 32:101-136 · Zbl 0465.73022 [4] Anzellotti G, Giaquinta M (1982) On the existence of the fields of stress and displacement for an elasto-perfectly plastic body in static equilibrium. J. Math Pure Appl 61:219-244 · Zbl 0467.73044 [5] Brezis H (1972) Integrales convexes dans les espaces de Sobolev. Israel J Math 13:9-23 [6] Brezis H (1972/73) Multiplicateur de Lagrange en torsion elastoplastique. Arch Rat Mech Anal 49:32-40 · Zbl 0265.35021 [7] Brezis H, Stampacchia G (1968) Sur la regularité de la solution d’inequations elliptiques. Bull Soc Math France 96:153-180 [8] Caffarelli L, Riviere N (1979) The Lipschitz character of the stress tensor, when twisting an elastic plastic bar. Arch Rat Mech Anal 69:31-36 · Zbl 0399.73044 [9] Courant R, Hilbert D (1962) Methods of mathematical physics, vol I. Wiley (Interscience), New York · Zbl 0099.29504 [10] Duvaut G, Lions JL (1972) Les inequations en mechanique et en physique. Dunod, Paris · Zbl 0298.73001 [11] Ekeland I, Temam R (1976) Convex analysis and variational problems. North-Holland, Amsterdam · Zbl 0322.90046 [12] Friedman A (1982) Variational principles and free boundary problems. Wiley-Interscience, New York · Zbl 0564.49002 [13] Gehring F (1973) TheL P integrability of the partial derivatives of a quasiconformal map. Acta Math 130:265-277 · Zbl 0258.30021 [14] Giaquinta M, Modica G (1979) Some regularity results for some classes of higher order elliptic systems. J Reine Angw Math 311:145-169 · Zbl 0409.35015 [15] Goffman C, Serrin J (1964) Sublinear functions of measures and variational integrals. Duke J Math 31:159-178 · Zbl 0123.09804 [16] Kinderlehrer D, Stampacchia G (1980) An introduction to variational inequalities and their applications. Academic Press, New York · Zbl 0457.35001 [17] Kohn R (1982) New integral estimates for deformations in terms of their nonlinear strains. Arch Rat Mech Anal 18:131-172 · Zbl 0491.73023 [18] Kohn R, Temam R (to appear) Dual spaces of stresses and strains with application to Hencky Plasticity. Appl Math Optim 10 · Zbl 0532.73039 [19] Love AEH (1944) A treatise on the mathematical theory of elasticity. Dover, New York · Zbl 0063.03651 [20] Morrey CB (1966) Multiple integrals in the calculus of variations. Springer-Verlag, New York · Zbl 0142.38701 [21] Prager W, Hodge P (1951) Theory of perfectly plastic solids. John Wiley, New York · Zbl 0044.39803 [22] Strang G (1979) A minimax problem in plasticity theory. Springer lecture notes in mathematics 701:319-333 · Zbl 0433.73034 [23] Suquet P (1979) Un espace fonctionnel pour les equations de la plasticite. Ann Fac Sc Toulouse 1:77-87. Also, thesis (1982) Universite Paris VI · Zbl 0405.46027 [24] Temam R (1979) Mathematical problems in plasticity theory. In: Cottle R, Gianessi F, Lions JL (eds) Complimentarity problems and variational inequalities. John Wiley, New York [25] Temam R (1981) Existence theorems for the variational problems of plasticity. In: Atteia M, Bancel D, Gumowski I (eds) Nonlinear problems of analysis in geometry and mechanics. Pitman, London · Zbl 0504.73020 [26] Teman R (1981a) On the continuity of the trace of vector functions with bounded deformation. Applicable Anal 11:291-302 · Zbl 0504.46027 [27] Temam R, Strang G (1980) Functions of bounded deformation. Arch Rat Mech Anal 75:7-21 · Zbl 0472.73031 [28] Temam R, Strang G (1980a) Duality and relaxation in the variational problems of plasticity. J de Mecanique 19:493-527 · Zbl 0465.73033 [29] Ting TW (1971) Elastic-plastic torsion of simply connected cylindrical bars. Ind Univ Math J 20:1047-1076 · Zbl 0214.24705 [30] Ting TW (1977) Elastic plastic torsion over multiply connected domains. Annali SNS Pisa 4:291-312 · Zbl 0368.73042 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.