Soukup, Vaclav Additional signals in linear discrete-time control systems. III: Additional disturbance feedforward. (English) Zbl 0522.93048 Kybernetika 19, 422-438 (1983). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page MSC: 93C57 Sampled-data control/observation systems 93C05 Linear systems in control theory 93D15 Stabilization of systems by feedback 93C55 Discrete-time control/observation systems 49K40 Sensitivity, stability, well-posedness 12E12 Equations in general fields Keywords:additional disturbance feedforward; time optimal control; least square control; closed-loop stability PDF BibTeX XML Cite \textit{V. Soukup}, Kybernetika 19, 422--438 (1983; Zbl 0522.93048) Full Text: EuDML References: [1] V. Kučera: Algebraic Theory of Discrete-Time Linear Control. Academia, Praha 1978. In Czech. [2] V. Kučera: Discrete Linear Control - The Polynomial Equation Approach. Wiley, Chichester 1979. [3] V. Strejc M. Šalamon Z. Kotek, M. Balda: Principles of Automatic Control Theory. SNTL, Praha 1958. In Czech. [4] W. Oppelt: Kleines Handbuch technischer Regelvorgänge. 4. Ersch., Verlag Chemie GmbH, Weinheim-Bergstr. 1964. · Zbl 0072.15301 [5] K. Reinisch: Analyse und Synthese kontinuierlicher Steuerungssysteme. VEB Verlag Technik, Berlin 1979. [6] S. Kubík Z. Kotek V. Strejc, J. Štecha: Automatic Control Theory I. SNTL-Alfa, Praha 1982. In Czech. [7] R. Isermann: Digital Control Systems. Springer-Verlag, Berlin 1981. · Zbl 0475.93003 [8] V. Soukup: Additional signals in linear discrete-time control systems I - Additional control signal. Kybernetika 18 (1982), 5, 415 - 439. · Zbl 0507.93050 · eudml:29025 [9] V. Soukup K. Havlíček, M. Lukeš: Additional signals in linear discrete-time control systems II - Additional feedback signal. Kybernetika 19 (1983), 2, 131-157. · Zbl 0508.93038 · eudml:28134 [10] V. Kučera: Closed-loop stability of discrete linear single variable systems. Kybernetika 10 (1974), 2, 146-171. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.