zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical algorithm for the time fractional Fokker-Planck equation. (English) Zbl 05221351
Summary: Anomalous diffusion is one of the most ubiquitous phenomena in nature, and it is present in a wide variety of physical situations, for instance, transport of fluid in porous media, diffusion of plasma, diffusion at liquid surfaces, etc. The fractional approach proved to be highly effective in a rich variety of scenarios such as continuous time random walk models, generalized Langevin equations, or the generalized master equation. To investigate the subdiffusion of anomalous diffusion, it would be useful to study a time fractional Fokker-Planck equation. In this paper, firstly the time fractional, the sense of Riemann-Liouville derivative, Fokker-Planck equation is transformed into a time fractional ordinary differential equation (FODE) in the sense of Caputo derivative by discretizing the spatial derivatives and using the properties of Riemann-Liouville derivative and Caputo derivative. Then combining the predictor-corrector approach with the method of lines, the algorithm is designed for numerically solving FODE with the numerical error $O(k^{\min\{1+2\alpha ,2\}})+O(h^{2})$, and the corresponding stability condition is got. The effectiveness of this numerical algorithm is evaluated by comparing its numerical results for $\alpha =1.0$ with the ones of directly discretizing classical Fokker-Planck equation, some numerical results for time fractional Fokker-Planck equation with several different fractional orders are demonstrated and compared with each other, moreover for $\alpha =0.8$ the convergent order in space is confirmed and the numerical results with different time step sizes are shown.

76Fluid mechanics
Full Text: DOI
[1] Agrawal, Om P.; Machado, J. A. Tenreiro; Sabatier, Jocelyn: Introduction. Nonlinear dynam. 38, 1-2 (2004)
[2] Barkai, E.; Metzler, R.; Klafter, J.: From continuous time random walks to the fractional Fokker -- Planck equation. Phys. rev. E 61, 132-138 (2000)
[3] Barkai, E.: Fractional Fokker -- Planck equation, solution, and application. Phys. rev. E 63, 046118 (2001)
[4] Bouchaud, J.; Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. rep. 195, 127-293 (1990)
[5] Butzer, P. L.; Westphal, U.: An introduction to fractional calculus. (2000) · Zbl 0987.26005
[6] Deng, W. H.: Short memory principle and a predictor -- corrector approach for fractional differential equations. J. comput. Appl. math. 206, 174-188 (2007) · Zbl 1121.65128
[7] Deng, W. H.; Lü, J. H.: Design of multi-directional multi-scroll chaotic attractors based on fractional differential systems via switching control. Chaos 16, 043120 (2006)
[8] Deng, W. H.: Generating 3-D scroll grid attractors of fractional differential systems via stair function. Int. J. Bifurcation chaos appl. Sci. eng. 17, 1-19 (2007)
[9] Deng, W. H.; Li, C. P.; Lü, J. H.: Stability analysis of linear fractional differential system with multiple time-delays. Nonlinear dynam. 48, 409-416 (2007) · Zbl 1185.34115
[10] Deng, W. H.: Generalized synchronization in fractional order systems. Phys. rev. E 75, 056201 (2007)
[11] Diethelm, K.; Ford, N. J.: Analysis of fractional differential equations. J. math. Anal. appl. 265, 229-248 (2002) · Zbl 1014.34003
[12] Diethelm, K.; Ford, N. J.; Freed, A. D.: A predictor -- corrector approach for the numerical solution of fractional differential equations. Nonlinear dynam. 29, 3-22 (2002) · Zbl 1009.65049
[13] Diethelm, K.; Ford, N. J.; Freed, A. D.: Detailed error analysis for a fractional Adams method. Numer. algorithms 36, 31-52 (2004) · Zbl 1055.65098
[14] Ford, N. J.; Simpson, A. C.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. algorithms 26, 336-346 (2001) · Zbl 0976.65062
[15] Goychuk, I.; Heinsalu, E.; Patriarca, M.; Schmid, G.; Hänggi, P.: Current and universal scaling in anomalous transport. Phys. rev. E 73, 020101 (2006)
[16] Heaviside, O.: Electromagnetic theory. (1971) · Zbl 30.0801.03
[17] Heinsalu, E.; Patriarca, M.; Goychuk, I.; Schmid, G.; Hänggi, P.: Fractional Fokker -- Planck dynamics: numerical algorithm and simulations. Phys. rev. E 73, 046133 (2006)
[18] Heymans, N.; Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann -- Liouville fractional derivatives. Rheol. acta 37, 1-7 (2005)
[19] Ichise, M.; Nagayanagi, Y.; Kojima, T.: An analog simulation of noninteger order transfer functions for analysis of electrode processes. J. electroanal. Chem. 33, 253-265 (1971)
[20] Jumarie, G.: A Fokker -- Planck equation of fractional order with respect to time. J. math. Phys. 33, 3536-3542 (1992) · Zbl 0761.60071
[21] Kenneth, S. M.; Bertram, R.: An introduction to the fractional calculus and fractional differential equations. (1993) · Zbl 0789.26002
[22] Koeller, R. C.: Application of fractional calculus to the theory of viscoelasticity. J. appl. Mech., 229-307 (1984) · Zbl 0544.73052
[23] Kusnezov, D.; Bulgac, A.; Dang, G. D.: Quantum Lévy processes and fractional kinetics. Phys. rev. Lett. 82, 1136-1139 (1999)
[24] Lavoie, J. L.; Osler, T. J.; Tremblay, R.: Fractional derivatives and special functions. SIAM rev. 18, 240-268 (1976) · Zbl 0324.44002
[25] Lenzi, E. K.; Mendes, R. S.; Fa, K. S.; Malacarne, L. C.: Anomalous diffusion: fractional Fokker -- Planck equation and its solutions. J. math. Phys. 44, 2179-2185 (2003) · Zbl 1062.82043
[26] Liu, F.; Anh, V.; Turner, I.: Numerical solution of the space fractional Fokker -- Planck equation. J. comput. Appl. math. 166, 209-219 (2004) · Zbl 1036.82019
[27] Lubich, C.: Fractional linear multistep methods for Abel-Volterra integral equations of the second kind. Math. comp. 45, 463-469 (1985) · Zbl 0584.65090
[28] Lubich, C.: Discretized fractional calculus. SIAM J. Math. anal. 17, 704-719 (1986) · Zbl 0624.65015
[29] Mandelbrot, B.: Some noises with 1/f spectrum, a Bridge between direct current and white noise. IEEE trans. Inform. theory 13, 289-298 (1967) · Zbl 0148.40507
[30] Meerschaert, M. M.; Scheffler, H. -P.; Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation. J. comput. Phys. 211, 249-261 (2006) · Zbl 1085.65080
[31] Metzler, R.; Barkai, E.; Klafter, J.: Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker -- Planck equation approach. Phys. rev. Lett. 82, 3563 (1999)
[32] Metzler, R.; Klafter, J.: The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. rep. 339, 1-77 (2000) · Zbl 0984.82032
[33] Podlubny, I.: Fractional differential equations. (1999) · Zbl 0924.34008
[34] Samko, S.; Kilbas, A.; Marichev, O.: Fractional integrals and derivatives: theory and applications. (1993) · Zbl 0818.26003
[35] Schneider, W. R.; Wyss, W.: Fractional diffusion and wave equations. J. math. Phys. 30, 134-144 (1989) · Zbl 0692.45004
[36] Solomon, T. H.; Weeks, E. R.; Swinney, H. L.: Observations of anomalous diffusion and Lévy flights in a 2-dimensional rotating flow. Phys. rev. Lett. 71, 3975-3979 (1993)
[37] Sugimoto, N.: Burgers equation with a fractional derivative: hereditary effects on nonlinear acoustic waves. J. fluid mech. 225, 631-653 (1991) · Zbl 0721.76011
[38] Zaslavsky, G. M.: Chaos, fractional kinetics, and anomalous transport. Phys. rep. 371, 461-580 (2002) · Zbl 0999.82053