General relativistic MHD simulations of black hole accretion disks and jets. (English) Zbl 1148.85315

Summary: Accretion disks orbiting black holes power high-energy systems such as X-ray binaries and Active Galactic Nuclei. Observations are providing increasingly detailed quantitative information about such systems. This data has been interpreted using standard toy-models that rely on simplifying assumptions such as regular flow geometry and a parameterized stress. Global numerical simulations offer a way to investigate the basic physical dynamics of accretion flows without these assumptions and, in principle, lead to a genuinely predictive theory. In recent years we have developed a fully three-dimensional general relativistic magnetohydrodynamic simulation code that evolves time-dependent inflows into Kerr black holes. Although the resulting global simulations of black hole accretion are still somewhat simplified, they have brought to light a number of interesting results. These include the formation of electro-magnetically dominated jets powered by the black hole’s rotation, and the presence of strong stresses in the plunging region of the accretion flow. The observational consequences of these features are gradually being examined. Increasing computer power and increasingly sophisticated algorithms promise a bright future for the computational approach to black hole accretion.


85A30 Hydrodynamic and hydromagnetic problems in astronomy and astrophysics
83C57 Black holes


Full Text: DOI


[1] Agol, E., Krolik, J.H.: Magnetic stress at the marginally stable orbit: altered disk structure, radiation, and black hole spin evolution. Astrophys. J. 528, 161–170 (2000)
[2] Anninos, P., Fragile, P.C., Salmonson, J.D.: Cosmos++: relativistic magnetohydrodynamics on unstructured grids with local adaptive refinement. Astrophys. J. 635, 723–740 (2005)
[3] Antón, L., Zanotti, O., Miralles, J.A., Martí, J.M., Ibáñez, J.M., Font, J.A., Pons, J.A.: Numerical 3+1 general relativistic magnetohydrodynamics: a local characteristic approach. Astrophys. J. 637, 296–312 (2006)
[4] Balbus, S.A., Hawley, J.F.: A powerful local shear instability in weakly magnetized disks. I–Linear analysis. Astrophys. J. 376, 214–233 (1991)
[5] Balbus, S.A., Hawley, J.F.: Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70, 1–53 (1998) · Zbl 1205.37002
[6] Blandford, R.D., Payne, D.G.: Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. Roy. Astron. Soc. 199, 883–903 (1982) · Zbl 0516.76108
[7] Blandford, R.D., Znajek, R.L.: Electromagnetic extraction of energy from Kerr black holes. Mon. Not. Roy. Astron. Soc. 179, 433–456 (1977)
[8] De Villiers, J.P., Hawley, J.F.: A numerical method for general relativistic magnetohydrodynamics. Astrophys. J. 589, 458–480 (2003)
[9] De Villiers, J.P., Hawley, J.F., Krolik, J.H.: Magnetically driven accretion flows in the Kerr metric. I. Models and overall structure. Astrophys. J. 599, 1238–1253 (2003)
[10] De Villiers, J.P., Hawley, J.F., Krolik, J.H., Hirose, S.: Magnetically driven accretion in the Kerr metric. III. Unbound outflows. Astrophys. J. 620, 878–888 (2005)
[11] Duez, M.D., Liu, Y.T., Shapiro, S.L., Stephens, B.C.: Relativistic magnetohydrodynamics in dynamical spacetimes: Numerical methods and tests. Phys. Rev. D 72(2), 024028 (2005)
[12] Evans, C.R., Hawley, J.F.: Simulation of magnetohydrodynamic flows–A constrained transport method. Astrophys. J. 332, 659–677 (1988)
[13] Gammie, C.F., McKinney, J.C., Tóth, G.: HARM: A numerical scheme for general relativistic magnetohydrodynamics. Astrophys. J. 589, 444–457 (2003)
[14] Hawley, J.F., Balbus, S.A.: The dynamical structure of nonradiative black hole accretion flows. Astrophys. J. 573, 738–748 (2002)
[15] Hawley, J.F., Krolik, J.H.: Magnetically driven jets in the Kerr metric. Astrophys. J. 641, 103–116 (2006)
[16] Hawley, J.F., Stone, J.M.: MOCCT: A numerical technique for astrophysical MHD. Comput. Phys. Commun. 89, 127–148 (1995) · Zbl 0923.76152
[17] Hirose, S., Krolik, J.H., De Villiers, J., Hawley, J.F.: Magnetically driven accretion flows in the Kerr metric. II. Structure of the magnetic field. Astrophys. J. 606, 1083–1097 (2004)
[18] Kato, Y., Mineshige, S., Shibata, K.: Magnetohydrodynamic accretion flows: formation of magnetic tower jet and subsequent quasi-steady state. Astrophys. J. 605, 307–320 (2004)
[19] Koide, S., Shibata, K., Kudoh, T., Meier, D.L.: Numerical method for general relativistic magnetohydrodynamics in Kerr space-time. J. Korean Astron. Soc. 34, 215–224 (2001)
[20] Komissarov, S.S.: General relativistic magnetohydrodynamic simulations of monopole magnetospheres of black holes. Mon. Not. Roy. Astron. Soc. 350, 1431–1436 (2004)
[21] Krolik, J.H., Hawley, J.F., Hirose, S.: Magnetically driven accretion flows in the Kerr metric. IV. Dynamical properties of the inner disk. Astrophys. J. 622, 1008–1023 (2005)
[22] Lynden-Bell, D.: On why discs generate magnetic towers and collimate jets. Mon. Not. Roy. Astron. Soc. 341, 1360–1372 (2003)
[23] McKinney, J.C.: Total and jet Blandford-Znajek power in the presence of an accretion disk. Astrophys. J. 630, L5–L8 (2005)
[24] McKinney, J.C.: General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems. Mon. Not. Roy. Astron. Soc. 368, 1561–1582 (2006)
[25] McKinney, J.C., Gammie, C.F.: A Measurement of the electromagnetic luminosity of a Kerr black hole. Astrophys. J. 611, 977–995 (2004)
[26] Novikov, I.D., Thorne, K.S.: Astrophysics of black holes. In: DeWitt, C., DeWitt, B. (eds.) Black Holes: Les Astres Occlus. Gordon and Breach, New York (1973)
[27] Ruffini, R., Wilson, J.R.: Relativistic magnetohydrodynamical effects of plasma accreting into a black hole. Phys. Rev. D 12, 2959–2962 (1975)
[28] Schnittman, J.D., Krolik, J.H., Hawley, J.F.: Light curves from an MHD simulation of a black hole accretion disk. Astrophys. J. 651, 1031–1048 (2006)
[29] Shakura, N.I., Sunyaev, R.A.: Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973)
[30] Stone, J.M., Norman, M.L.: ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II. The magnetohydrodynamic algorithms and tests. Astrophys. J. Suppl. Ser. 80, 791–818 (1992)
[31] Wilson, J.R.: Magnetohydrodynamics near a black hole. NASA STI/Recon Technical Report No. 76, 21098 (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.