×

zbMATH — the first resource for mathematics

Characters, asymptotic and n-homology of Harish-Chandra modules. (English) Zbl 0523.22013

MSC:
22E46 Semisimple Lie groups and their representations
20G10 Cohomology theory for linear algebraic groups
57T10 Homology and cohomology of Lie groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Atiyah, M. F. &Schmid, W., A geometric construction of the discrete series for semisimple Lie groups.Invent. Math., 42 (1977), 1–62. · Zbl 0373.22001
[2] Borel, A.,Introduction aux groupes arithmétiques. Hermann, Paris 1969. · Zbl 0186.33202
[3] Borel, A. Wallach, N.,Continuous chomology, discrete subgroups, and representations of reductive groups. Annals of Mathematical Studies 94. · Zbl 0980.22015
[4] Bruhat, F., Sur les représentations induites des groupes de Lie.Bull. Soc. Math. France, 84 (1956), 97–205. · Zbl 0074.10303
[5] Cartan, H. &Eilenberg, S.,Homological Algebra. Princeton University Press, Princeton 1956.
[6] Casselman, W., Characters and Jacquet modules.Math. Ann., 230 (1977), 101–105. · Zbl 0337.22019
[7] Casselman, W., Jacquet modules for real reductive groups. InProceedings of the International Congress of Mathematicians, Helsinki 1978, pp. 557–563.
[8] Casselman, W. & Miličić, D., Asymptotic behavior of matrix coefficients of admissible representations. Preprint.
[9] Casselman, W. &Osborne, M. S., The n-cohomology of representations with an infinitesimal character.Compositio Math., 31 (1975), 219–227. · Zbl 0343.17006
[10] –, The restriction of admissible representations to n.Math. Ann., 233 (1978), 193–198. · Zbl 0355.20041
[11] Dixmier, J., Algèbres enveloppantes. Gauthier-Villars, Paris 1974. · Zbl 0308.17007
[12] Fomin, A. I. &Shapovalov, N. N., A property of the characters of real semisimple Lie groups.Functional Anal. Appl., 8 (1974), 270–271. · Zbl 0302.22017
[13] Harish-Chandra, Representations of semisimple Lie groups I.Trans. Amer. Math. Soc., 75 (1953), 185–243. · Zbl 0051.34002
[14] –, Representations of semisimple Lie groups II.Trans. Amer. Math. Soc., 76 (1954), 26–65. · Zbl 0055.34002
[15] –, Representations of semisimple Lie groups III.Trans. Amer. Math. Soc., 76 (1954), 234–253. · Zbl 0055.34002
[16] –, The characters of semisimple Lie groups.Trans. Amer. Math. Soc., 83 (1956), 98–163. · Zbl 0072.01801
[17] –, Spherical functions on a semisimple Lie group I.Amer. J. Math., 80 (1958), 241–310. · Zbl 0093.12801
[18] –, Invariant eigendistributions on a semisimple Lie group.Trans. Amer. Math. Soc., 119 (1965), 457–508. · Zbl 0199.46402
[19] –, Discrete series for semisimple Lie groups II.Acta Math., 116 (1966), 1–111. · Zbl 0199.20102
[20] Harish-Chandra, On the theory of the Eisenstein integral. InConference on Harmonic Analysis, Springer Lecture Notes in Mathematics 266 (1972), pp. 123–149. · Zbl 0245.22019
[21] –, Harmonic analysis on real reductive groups I.J. Funct. Anal., 19 (1975), 104–204. · Zbl 0315.43002
[22] –, Harmonic analysis on real reductive groups III.Ann. of Math., 104 (1976), 117–201. · Zbl 0331.22007
[23] Hecht, H., On characters and asymptotics of representations of a real reductive Lie group.Math. Ann., 242 (1979), 103–126. · Zbl 0405.22010
[24] Hecht, H. &Schmid, W., A proof of Blattner’s conjecture.Invent. Math., 31 (1975), 129–154. · Zbl 0319.22012
[25] Hirai, T., The characters of some induced representations of semisimple Lie groups.J. Math. Kyoto Univ., 8 (1968), 313–363. · Zbl 0185.21503
[26] Hirai, T., Explicit form of the characters of discrete series representations of semisimple Lie groups. InProceedings of Symposia in Pure Mathematics 26 (1973), pp. 281–287. · Zbl 0287.22013
[27] Knapp, A. W. & Zuckerman, G., Classification of irreducible tempered representations of semisimple Lie groups. Preprint. · Zbl 0329.22013
[28] Langlands, R. P.,On the classification of irreducible representations of real algebraic groups. Mimeographed notes, Institute for Advanced Study 1973.
[29] Lepowsky, J., Algebraic results on representations of semisimple Lie groups.Trans. Amer. Math. Soc., 176 (1973), 1–44. · Zbl 0264.22012
[30] McConnel, J., The intersection theorem for a class of noncommutative rings.Proc. London Math. Soc., 17 (1967), 487–498. · Zbl 0148.26501
[31] Miličić, D., Asymptotic behavior of matrix coefficients of the discrete series.Duke Math. J., 44 (1977), 59–88. · Zbl 0398.22022
[32] Nouazé, Y. &Gabriel, P., Idéaux premiers d’algèbre enveloppante d’une algèbre de Lie nilpotente.J. Algebra, 6 (1967), 77–99. · Zbl 0159.04101
[33] Osborne, M. S., Lefschetz formulas on non-elliptic complexes. Thesis, Yale University 1972.
[34] Schmid, W.,L 2-cohomology and the discrete series.Ann. of Math., 103 (1976), 375–394. · Zbl 0333.22009
[35] Schmid, W., Two character identities for semisimple Lie groups. InNoncommutative Harmonic Analysis, Springer Lecture Notes in Mathematics 587 (1977), pp. 196–225.
[36] –, Vanishing theorems for Lie algebra cohomology and the cohomology of discrete subgroups of semisimple Lie groups.Adv. in Math., 41 (1981), 78–113. · Zbl 0472.22003
[37] Speh, B. &Vogan, D., Reducibility of generalized principal series representations.Acta Math., 145 (1980), 227–299. · Zbl 0457.22011
[38] Trombi, P. C., The tempered spectrum of a real semisimple Lie group.Amer. J. Math., 99 (1977), 57–75. · Zbl 0373.22007
[39] Trombi, P. C. &Varadarajan, V. S., Asymptotic behavior of eigenfunctions on a semisimple Lie group; the discrete spectrum.Acta Math., 129 (1972), 237–280. · Zbl 0244.43006
[40] Vogan, D., Lie algebra cohomology and the representations of semisimple Lie groups. Thesis, M.I.T. 1976.
[41] Vogan, D., Complex geometry and representations of reductive groups. Preprint. · Zbl 0681.22013
[42] Wolf, J. A.,Unitary representations on partially holomorphic cohomology spaces. Amer. Math. Soc. Memoir 138 (1974). · Zbl 0288.22022
[43] Zuckerman, G., Tensor products of finite and infinite dimensional representations of semisimple Lie groups.Ann. of Math., 106 (1977), 295–308. · Zbl 0384.22004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.