×

zbMATH — the first resource for mathematics

Representations of \(GL(n)\) and division algebras over a p-adic field. (English) Zbl 0523.22015

MSC:
22E46 Semisimple Lie groups and their representations
22E30 Analysis on real and complex Lie groups
43A80 Analysis on other specific Lie groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive \({\mathfrak p}\)-adic groups. I , Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441-472. · Zbl 0412.22015 · numdam:ASENS_1977_4_10_4_441_0 · eudml:82002
[2] A. Borel and N. R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups , Annals of Mathematics Studies, vol. 94, Princeton University Press, Princeton, N.J., 1980. · Zbl 0443.22010
[3] A. Borel, Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup , Invent. Math. 35 (1976), 233-259. · Zbl 0334.22012 · doi:10.1007/BF01390139 · eudml:142406
[4] W. Casselman, Introduction to the theory of admissible representions of \(p\)-adic groups ,
[5] L. Clozel, Une démonstration de la conjecture de Howe pour le groupe linéare d’un corps \(p\)-adique , · Zbl 1025.11012 · doi:10.1007/s00222-002-0253-8
[6] D. L. De George and N. R. Wallach, Limit formulas for multiplicities in \(L^{2}(\Gamma \backslash G)\) , Ann. Math. (2) 107 (1978), no. 1, 133-150. JSTOR: · Zbl 0397.22007 · doi:10.2307/1971140 · links.jstor.org
[7] D. Flath Thesis, Harvard University, 1977.
[8] R. Godement and H. Jacquet, Zeta functions of simple algebras , Springer-Verlag, Berlin, 1972. · Zbl 0244.12011 · doi:10.1007/BFb0070263
[9] Harish-Chandra, Admissible invariant distributions on reductive \(p\)-adic groups , Lie theories and their applications (Proc. Ann. Sem. Canad. Math. Congr., Queen’s Univ., Kingston, Ont., 1977), Queen’s Univ., Kingston, Ont., 1978, 281-347. Queen’s Papers in Pure Appl. Math., No. 48. · Zbl 0433.22012
[10] Harish-Chandra, Harmonic analysis on reductive \(p\)-adic groups , Lecture Notes in Mathematics, vol. 162, Springer-Verlag, Berlin, 1970. · Zbl 0202.41101
[11] Harish-Chandra, Harmonic analysis on reductive \(p\)-adic groups , Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972), Amer. Math. Soc., Providence, R.I., 1973, pp. 167-192. · Zbl 0289.22018
[12] R. Howe, The Fourier transform and germs of characters (case of \({\mathrm Gl}_{n}\) over a \(p\)-adic field) , Math. Ann. 208 (1974), 305-322. · Zbl 0266.43007 · doi:10.1007/BF01432155 · eudml:162577
[13] H. Jacquet and R. P. Langlands, Automorphic forms on \({\mathrm GL}(2)\) , Lecture Notes in Math., Springer-Verlag, Berlin, 1970. · Zbl 0236.12010 · doi:10.1007/BFb0058988
[14] 1 H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic representations. I , Amer. J. Math. 103 (1981), no. 3, 499-558. JSTOR: · Zbl 0473.12008 · doi:10.2307/2374103 · links.jstor.org
[15] 2 H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic forms. II , Amer. J. Math. 103 (1981), no. 4, 777-815. JSTOR: · Zbl 0491.10020 · doi:10.2307/2374050 · links.jstor.org
[16] H. Jacquet, Generic representations , Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1976), Springer, Berlin, 1977, 91-101. Lecture Notes in Math., Vol. 587. · Zbl 0357.22010
[17] R. P. Langlands, Les débuts d’une formule des traces stables , · Zbl 0532.22017
[18] R. P. Langlands, Base change for \({\mathrm GL}(2)\) , Annals of Mathematics Studies, vol. 96, Princeton University Press, Princeton, N.J., 1980. · Zbl 0444.22007
[19] R. Ranga Rao, Orbital integrals in reductive groups , Ann. of Math. (2) 96 (1972), 505-510. JSTOR: · Zbl 0302.43002 · doi:10.2307/1970822 · links.jstor.org
[20] J. D. Rogawski, An application of the building to orbital integrals , Compositio Math. 42 (1980/81), no. 3, 417-423. · Zbl 0471.22020 · numdam:CM_1980__42_3_417_0 · eudml:89488
[21] J. Rogawski Thesis, Princeton University, 1980.
[22] J. A. Shalika, A theorem on semi-simple \({\mathcal P}\)-adic groups , Ann. of Math. (2) 95 (1972), 226-242. JSTOR: · Zbl 0281.22011 · doi:10.2307/1970797 · links.jstor.org
[23] M.-F. Vignéras, Caractérisation des intégrales orbitales sur un groupe réductif \(p\)-adique , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 945-961 (1982). · Zbl 0499.22011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.