×

Approximation de quelques problèmes de type Stokes par une méthode d’éléments finis mixtes. (French) Zbl 0523.34009


MSC:

34A45 Theoretical approximation of solutions to ordinary differential equations
34B99 Boundary value problems for ordinary differential equations
65L10 Numerical solution of boundary value problems involving ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Adams, R.A.: Sobolev spaces. New York: Academic Press 1975 · Zbl 0314.46030
[2] Aubin, J.P.: Behaviour of the errors of the approximate solutions of boundary value problems for elliptic operators by Galerkin’s and finite difference methods. Ann. Scuola Norm. Sup. Pisa C1. Sci.21, 599-637 (1967) · Zbl 0276.65052
[3] Bercovier, M., Pironneau, O.: Estimations d’erreurs pour la r?solution du probl?me de Stokes en ?l?ments finis conformes de Lagrange. CRAS Paris, T285A, 1085-1087 (1977) · Zbl 0377.65055
[4] Brezzi, F.: On the existence uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. Rev. Fran?aise Automat. Informat. Recherche Operationnelle. Numerical Analysis,8-R2, 129-151 (1974) · Zbl 0338.90047
[5] Ciarlet, P.G.: The finite element method for elliptic problems. Amsterdam: North Holland 1978 · Zbl 0383.65058
[6] Conca, C.: Etude d’?coulements visqueux incompressibles dans un condenseur Th?se de 3?me cycle, Universit? Pierre et Marie Curie, 1982
[7] Duvaut, G., Lions, J.L.: Les in?quations en m?canique et en physique. Paris: Dunod 1971
[8] Ekeland, I., Teman, R.: Analyse convexe et probl?mes variationnels. Paris: Dunod 1973
[9] Glowinski, R., Pironneau, O.: On a mixed finite element approximation of the Stokes problem (I). Convergence of the approximate solutions. Numer. Math.33, 397-424 (1979) · Zbl 0423.65059
[10] Glowinski, R., Pironneau, O.: On a mixed finite element approximation of the Stokes problem (II). Solution of the approximate problem. (To appear) · Zbl 0423.65059
[11] Glowinski, R.: Lectures on numerical methods for non linear variational problems. Lectures on Mathematics and Physics, Vol. 65. Tata Institute of Fundamental Research, Bombay, 1980. (Distribution by Springer-Verlag, Berlin) · Zbl 0456.65035
[12] Letallec, P.: A mixed finite element approximation of the Navier-Stokes equations. Numer. Math.35, 381-404 (1980) · Zbl 0503.76033
[13] Lions, J.L., Magenes, E.: Non homogeneous boundary value problems and applications. Vol. I. Berlin-Heidelberg-New York: Springer 1972 · Zbl 0227.35001
[14] Ne?as, J.: Les m?thodes directes en th?orie des ?quations elliptiques. Paris: Masson 1967
[15] Nitsche, J.A.: Ein Kriterium f?r die Quasi-Optimalit?t des Ritzchen Verfahrens. Numer. Math.11, 346-368 (1968) · Zbl 0175.45801
[16] Periaux, J.: R?solution de quelques probl?mes non lin?aires en aerodynamique par des m?thodes d’?l?ments finis et de moindres carr?s fonctionnels. Th?se de 3?me cycle, Universit? Pierre et Marie Curie, 1979
[17] Strang, G., Fix, G.: An analysis of the finite element method. Englewood Cliffs, N.J.: Prentice Hall 1973 · Zbl 0356.65096
[18] Tartar, L.: Topics in non-linear analysis. Publications math?matiques d’Orsay.78 (13) 1978
[19] Temam, R.: Navier-Stokes equations. Amsterdam: North-Holland 1977 · Zbl 0383.35057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.