Talagrand, Michel La propriété de Dunford-Pettis dans \(C(K,E)\) et \(L^ 1(E)\). (French) Zbl 0523.46015 Isr. J. Math. 44, 317-321 (1983). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 21 Documents MSC: 46B25 Classical Banach spaces in the general theory 46G10 Vector-valued measures and integration 46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) 46E15 Banach spaces of continuous, differentiable or analytic functions Keywords:space of continuous functions; space of integrable functions; Dunford- Pettis property; Schur property Citations:Zbl 0387.46015 PDF BibTeX XML Cite \textit{M. Talagrand}, Isr. J. Math. 44, 317--321 (1983; Zbl 0523.46015) Full Text: DOI OpenURL References: [1] A. Grothendieck,Sur les applications linéaires faiblement compactes d’espaces du type C(K), Can. J. Math.5 (1953), 129–173. · Zbl 0050.10902 [2] J. Hagler,A counterexample to several questions about Banach spaces, Studia Math.60 (1977), 289–308. · Zbl 0387.46015 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.