×

zbMATH — the first resource for mathematics

La 1-forme de torsion d’une variété hermitienne compacte. (French) Zbl 0523.53059

MSC:
53C55 Global differential geometry of Hermitian and Kählerian manifolds
32Q99 Complex manifolds
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Aubin, T.: Equations différentielles non-linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl.55, 269-296 (1976) · Zbl 0336.53033
[2] Beauville, A.: Surfaces K3. Séminaire Bourbaki 1982/1983 Exposé no 609
[3] Séminaire Palaiseau 1978: Première classe de Chern et courbure de Ricci: preuve de la conjecture de Calabi. Astérisque58 (SMF)
[4] Folland, G.B.: Weyl manifolds. J. Differential Geometry4, 145-153 (1970) · Zbl 0195.23904
[5] Gauduchon, P.: Le théorème de l’excentricité nulle. C.R. Acad. Sci. Paris285, 387-390 (1977) · Zbl 0362.53024
[6] Gauduchon, P.: Fibrés hermitiens à endomorphisme de Ricci non-négatif. Bull. Soc. math. France105, 113-140 (1977) · Zbl 0382.53045
[7] Gauduchon, P.: La classe de Chern pluriharmonique. C.R. Acad. Sci. Paris282, 479-482 (1976) · Zbl 0347.53029
[8] Gauduchon, P.: Le théorème de dualité pluriharmonique. C.R. Acad. Sci. Paris293, 59-63 (1981)
[9] Hopf, E.: Elementare Bemerkungen über die Lösung partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus. Sitzungber. Preuss. Akad. Wiss. Phys. Math. Kl.19, 147-152 (1927) · JFM 53.0454.02
[10] Kobayashi, S.: Curvature and stability of vector bundles. Proc. Japan Acad. Ser. A58 158-162 (1982) · Zbl 0546.53041
[11] Kobayashi, S.: Lecture notes (non publié)
[12] Kobayashi, S., Nomizu, K.: Foundations of differential geometry II. Wiley: Interscience 1969 · Zbl 0175.48504
[13] Kodaira, K.: On the structure of compact complex analytic surfaces. I. Am. J. Math.86, 751-798 (1964) · Zbl 0137.17501
[14] Lichnerowicz, A.: Théorie globale des connexions et des groupes d’holonomie. Roma: Edizione Cremonese 1962
[15] Siu, Y.T.: Every K3 surface is Kähler Invent. Math.73, 139-150 (1983) · Zbl 0557.32004
[16] Vaisman, I.: Some curvature properties of complex surface. Preprint (1980) · Zbl 0435.53044
[17] Vaisman, I.: On locally and globally conformal Kähler manifolds. Trans. Am. Math. Soc.262, 533-542 (1980) · Zbl 0446.53048
[18] Wells, R.O., Jr.: Differential analysis on complex manifolds. Graduated 2o ed. Texts in Mathematics, Berlin, Heidelberg New York: Springer 1979
[19] Weyl, H.: Space-time-matter. (transl. f. Raum Zeit Materie, 1921). London: Dover 1952
[20] Chern, S.S.: Complex Manifolds without potential theory. Berlin, Heidelberg, New York: Springer 1979 · Zbl 0444.32004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.