×

Dimension, entropy and Lyapunov exponents. (English) Zbl 0523.58024


MSC:

37A99 Ergodic theory
28D20 Entropy and other invariants
37D99 Dynamical systems with hyperbolic behavior
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1017/S0143385700001309 · Zbl 0501.58028
[2] Katok, Publ. Math. I.H.E.S. 51 pp 137– (1980) · Zbl 0445.58015
[3] Ruelle, Publ. Math. I.H.E.S. 50 pp 27– (1979) · Zbl 0426.58014
[4] Kaplan, Chaotic Behavior of Multidimensional Difference Equations pp 228– (1979)
[5] DOI: 10.1093/qmath/os-20.1.31 · Zbl 0031.20801
[6] Douady, C.R. Acad. Sci. 24 pp 1135– (1980)
[7] Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (1975) · Zbl 0308.28010
[8] DOI: 10.1007/BF01762666 · Zbl 0299.54031
[9] Billingsley, Ergodic Theory and Information (1965)
[10] DOI: 10.1007/BF01448030 · Zbl 0009.39503
[11] DOI: 10.1007/BF02584795 · Zbl 0432.58013
[12] DOI: 10.1070/RM1977v032n04ABEH001639 · Zbl 0383.58011
[13] Oseledec, Trudy Moskov. Mat. Obšč. 19 pp 179– (1968)
[14] Nitecki, Differentiable Dynamics (1971)
[15] DOI: 10.1017/S0143385700001371 · Zbl 0487.58011
[16] Mañé, Ergod. Th. & Dynam. Sys. 1 pp 95– (1981)
[17] DOI: 10.1007/BF01208896 · Zbl 0486.58021
[18] Kolmogorov, Dokl. Akad. Nauk SSSR 119 pp 861– (1958)
[19] DOI: 10.1090/S0002-9904-1967-11798-1 · Zbl 0202.55202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.