×

zbMATH — the first resource for mathematics

Microdistributions de Fourier classiques dans le cadre analytique réel. (French) Zbl 0523.58040

MSC:
58J40 Pseudodifferential and Fourier integral operators on manifolds
35S05 Pseudodifferential operators as generalizations of partial differential operators
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] H. BOUGRINI, Propriétés de transmission analytique pour LES distributions intégrales de Fourier, Thèse de 3e cycle, Nice, Juin 1983.
[2] L. BOUTET DE MONVEL, Opérateurs pseudo-différentiels analytiques et opérateurs d’ordre infini, Ann. Inst. Fourier, 22-3 (1972), 229-268. · Zbl 0235.47029
[3] L. BOUTET DE MONVEL, P. KREE, Pseudo-differential operators and Gevrey classes, Ann. Inst. Fourier, 17-1 (1967), 295-323. · Zbl 0195.14403
[4] J. CHAZARAIN, A. PIRIOU, Introduction à la théorie des équations aux dérivées partielles linéaires, Bordas (Dunod), Paris, 1981. · Zbl 0446.35001
[5] J. J. DUISTERMAAT, Fourier integral operators, Courant Institute of Math. Sciences, New-York University (1973). · Zbl 0272.47028
[6] L. HÖRMANDER, Fourier integral operators I, Acta Mathematica, 127 (1971), 79-183. · Zbl 0212.46601
[7] M. SATO, T. KAWAI, M. KASHIWARA, Microfunctions and pseudo-differential equations, Springer Lecture Notes in Math., 287 (1973), 265-529. · Zbl 0277.46039
[8] P. SCHAPIRA, Conditions de positivité dans une variété symplectique. applications à l’étude des microfonctions, Ann. Scient. Ec. Norm. Sup., 4e série, 14 (1981), 121-139. · Zbl 0473.58022
[9] J. SJÖSTRAND, Propagation of analytic singularites for second order Dirichlet problems, Comm. in P.D.E., 5 (1) (1980), 41-94. · Zbl 0458.35026
[10] J. SJÖSTRAND, Singularités analytiques microlocales, Astérisque, 95 (1982), 1-166. · Zbl 0524.35007
[11] F. TREVES, Introduction to pseudo-differential and Fourier integral operators, vol. I. Plenum Press, New-York (1980). · Zbl 0453.47027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.