×

zbMATH — the first resource for mathematics

Optimal control of a class of the discrete-time distributed-parameter systems. (English) Zbl 0523.93042
MSC:
93C55 Discrete-time control/observation systems
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C05 Linear systems in control theory
93B50 Synthesis problems
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] T. K. Sirazetdinov: Optimal Control of Distributed-Parameter Systems. (in Russian). Nauka, Moscow 1977. · Zbl 0415.49004
[2] W. H. Ray an’d D. G. Lainiotis: Distributed Parameter Systems. Marcel Dekker, Inc., New York and Basel 1978.
[3] D. Chmurný J. Mikleš P. Dostál, J. Dvoran: Process Systems Analysis and Control. (in Slovak). ALFA, Bratislava 1983.
[4] J. Mikleš: Optimal feedback control of a class of distributed-parameter systems with incomplete measurement. Kybernetika 18 (1982), 1, 50-65.
[5] S. G. Tzafestas: Bayesian approach to distributed-parameter filtering and smoothing. Internat. J. Control IS (1972), 2, 273-295. · Zbl 0237.93056 · doi:10.1080/00207177208932146
[6] D. F. Liang: State estimation for nonlinear distributed-parameter systems involving multiple delays. IEEE Trans. Automat. Control AC-23 (1978), 3, 502-504. · Zbl 0377.93031 · doi:10.1109/TAC.1978.1101755
[7] S. Omatu, T. Soeda: An application of the discrete-time distributed parameter filtering to environmental data processing. Proc. 1981 IFAC Congress, Kyoto, Japan, II-82-II-87. · Zbl 0527.93059
[8] R. Bellman, E. Angel: Dynamic Programming and Partial Differential Equations. (Russian edition). Mir, Moscow 1974. · Zbl 0285.65002
[9] R. E. Kalman, J. E. Bertram: Control system analysis and design via the second method of Lyapunov. J. Basic Engineering 82 (1960), 371-399.
[10] M. N. Denn: Optimal linear control of distributed systems. IEC Fundamentals 7 (1968), 3, 410-413.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.