×

zbMATH — the first resource for mathematics

Isols and balanced block designs with lambda=1. (English) Zbl 0524.05012
MSC:
05B05 Combinatorial aspects of block designs
03D50 Recursive equivalence types of sets and structures, isols
05B07 Triple systems
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] R.H. Bruck : What is a loop ? In Studies in modern algebra , ed. A.A. Albert, Prentice Hall, Englewood Cliffs, N. J. 1963, pp. 59-99. · Zbl 0199.05202
[2] J.C.E. Dekker : Congruences in isols with a finite modulus . Math. Zeitschr. 70 (1958) 113-124. · Zbl 0084.00901 · doi:10.1007/BF01558579 · eudml:169764
[3] J.C.E. Dekker : Regressive isols . In Sets, models and recursion theory , ed. J.N. Crossley, N. Holland Pub. Co., Amsterdam, 1967, pp. 272-296. · Zbl 0155.34002
[4] J.C.E. Dekker : Projective planes of infinite, but isolic order . J. Symb. Logic 41 (1976) 391-404. · Zbl 0332.02050 · doi:10.2307/2272238
[5] J.C.E. Dekker : Projective bigraphs with recursive operations . Notre Dame J. of Formal Logic 19 (1978) 193-199. · Zbl 0363.02048 · doi:10.1305/ndjfl/1093888313
[6] J.C.E. Dekker and J. Myhill : Recursive equivalence types . Univ. of California Publications in Mathematics, N. S. (1960) 67-214. · Zbl 0249.02021
[7] E. Ellentuck : Galois theorems for isolated fields . Zeitschr. für math. Logik and Grundlagen der Math. 27 (1981) 1-9. · Zbl 0523.03032 · doi:10.1002/malq.19810270102
[8] A. Nerode : Extensions to isols . Annals Math. 73 (1961) 362-403. · Zbl 0101.01203 · doi:10.2307/1970338
[9] A. Nerode : Extensions to isolic integers . Annals Math. 75 (1962) 419-448. · Zbl 0106.00801 · doi:10.2307/1970206
[10] A. Nerode : Non-linear combinatorial functions of isols . Math. Zeitschr. 86 (1965) 410-424. · Zbl 0158.25103 · doi:10.1007/BF01110812 · eudml:170354
[11] A.P. Street and W.D. Wallis : Combinatorial theory: an introduction . Charles Babbage Research Centre, Winnipeg, 1977. · Zbl 0364.05001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.