zbMATH — the first resource for mathematics

An algebraic computation of the Alexander polynomial of a plane algebraic curve. (English) Zbl 0524.14028

14H45 Special algebraic curves and curves of low genus
14H30 Coverings of curves, fundamental group
57Q45 Knots and links in high dimensions (PL-topology) (MSC2010)
57M25 Knots and links in the \(3\)-sphere (MSC2010)
Full Text: DOI
[1] Deligne, P.: Equations differentielles a points singuliers reguliers III. Lect. Note in Math., vol.163, Springer (1970). · Zbl 0244.14004
[2] Grothendieck, A.: On the de Rham cohomology of algebraic varieties. Publ. Math. I.H.E.S., 29, 95-103 (1966). · Zbl 0145.17602
[3] Kohno, T.: Differential forms and the fundamental group of the complement of hypersurfaces (to appear in Proc. of pure Math., A.M.S.). · Zbl 0519.57001
[4] Kohno, T.: Etude algebrique du groupe fondamental du complement des hypersurfaces et problemes de K(7tt 1). These de 3eme Cycle, Universite Paris VII (1982).
[5] Libgober, A.: Alexander polynomials of plane algebraic curves (1981) (preprint). · Zbl 0524.14026
[6] Oka, M.: On the fundamental group of the complement of a reducible curve inP2. J. London Math. Soc, 12, 239-252 (1976). · Zbl 0337.14019
[7] Randell, R.: Some topology of Zariski surfaces. Lect. Note in Math., vol. 788, Springer, pp. 145-165 (1979). · Zbl 0433.14020
[8] Sullivan, D.: Infinitesimal computations in topology. Publ. Math. I.H.E.S., 47, 269-331 (1977). · Zbl 0374.57002
[9] Zariski, 0.: On the existence of algebraic functions of two variables possessing a given branched curve. Amer. J. Math., 51, 305-328 (1929). JSTOR: · JFM 55.0806.01
[10] Zariski, 0.: On the irregularity of cyclic multiple planes. Ann. of Math., 32, 131-141 (1931). · Zbl 0001.40301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.