×

zbMATH — the first resource for mathematics

Geometric construction of cohomology for arithmetic groups. I. (English) Zbl 0524.22012

MSC:
22E40 Discrete subgroups of Lie groups
55M20 Fixed points and coincidences in algebraic topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Birkes D 1971 Orbits of linear algebraic groups.Ann. Math. (2)93 459–475 · Zbl 0212.36402 · doi:10.2307/1970884
[2] Borel A 1976 Cohomologie de sous-groupes discrets et repr√©sentations de groupes semisimples.Bull. Soc. Math. France 32-33 73–112 · Zbl 0333.57023
[3] Borel A 1969Introduction aux Groupes Arithmetiques (Hermann)
[4] Borel A 1963 Compact Clifford-Klein forms of symmetric spaces.Topology 2 111–122 · Zbl 0116.38603 · doi:10.1016/0040-9383(63)90026-0
[5] Borel A and Wallach N Seminar on the cohomology of discrete subgroups of semi-simple groups.Ann. Math. Studies, Princeton University Press (to appear) · Zbl 0980.22015
[6] Casselman W and Schmid W to appear
[7] Helgason SDifferential geometry and symmetric spaces (New York: Academic Press)
[8] Kneser M 1966 Strong approximation.Proc. Symp. Pure Math. 9 187–196
[9] O’Meara O T 1971Introduction to quadratic forms (New York: Springer Verlag)
[10] Millson J J 1976 On the first Betti number of a constant negatively curved manifoldAnn. Math. 104 235–247 · Zbl 0364.53020 · doi:10.2307/1971046
[11] Mostow G D 1973 Strong rigidity of locally symmetric spaces.Ann. Math. Studies (Princeton, New Jersey) · Zbl 0265.53039
[12] Serre J P 1973Cohomologie Galoisienne (Springer-Verlag)
[13] Zuckerman G Continuous cohomology and unitary representations of real reductive groups (to appear)
[14] Tits J 1966 Classification of algebraic semisimple groups.Proc. Symp. Pure Math. 9 33–62
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.