Sjoestrand, Johannes Propagation of analytic singularities for second order Dirichlet problems. III. (English) Zbl 0524.35032 Commun. Partial Differ. Equations 6, 499-567 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 4 Documents MSC: 35J25 Boundary value problems for second-order elliptic equations 58J47 Propagation of singularities; initial value problems on manifolds 78A45 Diffraction, scattering Keywords:propagation of analytic singularities; second order Dirichlet problems; analytic wave front set; diffractive region Citations:Zbl 0458.35026 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Eskin G., Comm. P.D.E 1 (6) pp 521– (1976) · Zbl 0355.35053 · doi:10.1080/03605307608820020 [2] H[otilde]rmander L., C.P.A.M. 23 (6) pp 329– (1970) [3] H[otilde]rmander L., An introduction to complex analysis in several variables (1973) [4] H[otilde]rmander L., Acta Math 113 pp 89– (1965) · Zbl 0158.11002 · doi:10.1007/BF02391775 [5] Kataoka K., a theorem on regularity of diffractive operators [6] Melin A., Springer Lecture Notes in Mathematics 459 pp 121– [7] Melrose R., Duke Math 42 (4) pp 605– (1975) · Zbl 0368.35055 · doi:10.1215/S0012-7094-75-04254-4 [8] Melrose R., Tr. Vsesoyuzn. matem. s’ezda 15 (1977) [9] Mizohata S., J. Math. Kyoto Univ 1 (4) pp 271– (1962) [10] Sato M., Springer Lecture Notes in Mathematics 287 (4) [11] Schapira, P. 1977.Propagation at the boundary and reflection of analytic singularities of solutions of linear partial differential equations I, Vol. 12, 441–453. R.I.M.S., Kyoto Univ. · Zbl 0378.35065 [12] Schapira P., Propagation au bord et rèflexion des singularitiès analytiques des solutions des equations aux deriveès partielles II 9 (1976) [13] Rauch J., Indiana Univ. Math. J., to appear [14] Sjōstrand J., Coram. P.D.E 5 (1) pp 41– (1980) · Zbl 0458.35026 · doi:10.1080/03605308008820133 [15] Sjōstrand J., Comm. P.D.E 5 (2) pp 187– (1980) · Zbl 0534.35030 · doi:10.1080/03605308008820137 [16] Taylor M., C.P.A.M 29 (1) pp 1– (1976) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.